Pore-scale study on the stress jump coefficient in porous composite system

被引:1
|
作者
Liu, Kangyuan [1 ]
Li, Xin [1 ]
Wang, Jiabing [1 ]
Yang, Kun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL FOAM; BOUNDARY-CONDITIONS; MOMENTUM-TRANSFER; HEAT-TRANSFER; FLUID; INTERFACE; FLOW; CHANNEL; PERFORMANCE;
D O I
10.1063/5.0146181
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The stress jump coefficient at the fluid/porous interface is a fundamental parameter to study the velocity distribution in a porous composite system. In this paper, a substantial work is carried out to investigate the characteristics of the stress jump coefficient. To this end, the real pore structure of metal foam is constructed using the Weaire-Phelan model, and the macro model and the pore-scale model are presented to simulate a complex three-dimensional porous composite system. Furthermore, a novel method to determine the stress jump coefficient is proposed. The influences of the inlet velocity, the rotation number, the porosity, the free fluid layer thickness, and the flow pattern (the Poiseuille flow, the free boundary flow, and the rotating channel flow) on the stress jump coefficient are studied. The results show that the stress jump coefficient varies with the porosity, which shows that it is dependent on the porous structure. It also found that the stress jump coefficient is independent of the inlet velocity, the rotation number, and the flow pattern. When the thickness of the free fluid layer is large, the stress jump coefficient is also independent of the thickness of the fluid layer.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A pore-scale investigation of a multiphase porous media system
    Al-Raoush, RI
    Willson, CS
    JOURNAL OF CONTAMINANT HYDROLOGY, 2005, 77 (1-2) : 67 - 89
  • [2] Pore-Scale Study on Convective Drying of Porous Media
    Fei, Linlin
    Qin, Feifei
    Zhao, Jianlin
    Derome, Dominique
    Carmeliet, Jan
    LANGMUIR, 2022, 38 (19) : 6023 - 6035
  • [3] Determination of the stress jump coefficient, the interstitial heat transfer coefficient and the interface heat transfer coefficient in a porous composite system
    Yang, Kun
    Chen, Hao
    Liu, Wei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 115 : 657 - 662
  • [4] Pore-scale study on the effect of heterogeneity on evaporation in porous media
    Fei, Linlin
    Derome, Dominique
    Carmeliet, Jan
    JOURNAL OF FLUID MECHANICS, 2024, 983
  • [5] Pore-Scale Simulation of Dispersion in Porous Media
    Garmeh, G.
    Johns, R. T.
    Lake, L. W.
    SPE JOURNAL, 2009, 14 (04): : 559 - 567
  • [6] Pore-scale simulation of flow in porous rocks for wall shear stress analysis
    Feriadi, Yusron
    Arbie, Muhammad Rizqie
    Fauzi, Umar
    Fariduzzaman
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (04) : 4877 - 4897
  • [7] Atomic layer deposition in porous electrodes: A pore-scale modeling study
    Fang, Wen-Zhen
    Tang, Yu-Qing
    Ban, Chunmei
    Kang, Qinjun
    Qiao, Rui
    Tao, Wen-Quan
    CHEMICAL ENGINEERING JOURNAL, 2019, 378
  • [8] Pore-scale study of three-phase displacement in porous media
    Zhu, Xiaofei
    Chen, Li
    Wang, Sen
    Feng, Qihong
    Tao, Wenquan
    PHYSICS OF FLUIDS, 2022, 34 (04)
  • [9] A pore-scale study of transport of inertial particles by water in porous media
    Kokubun, M. A. Endo
    Muntean, A.
    Radu, F. A.
    Kumar, K.
    Pop, I. S.
    Keilegavlen, E.
    Spildo, K.
    CHEMICAL ENGINEERING SCIENCE, 2019, 207 : 397 - 409
  • [10] Pore-scale study of particle transport and clogging mechanisms in a porous micromodel
    He, Haiyang
    Xiong, Xiaofeng
    Wu, Ting
    Hu, Ran
    Chen, Yi-Feng
    Yang, Zhibing
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 362