Development of low-carbon alkali-activated materials solely activated by flue gas residues (FGR) waste from incineration plants

被引:43
|
作者
Ahmad, Muhammad Riaz [1 ]
Das, Chandra Sekhar [1 ]
Khan, Mehran [1 ]
Dai, Jian-Guo [1 ]
机构
[1] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
关键词
Flue gas residues; Alternative alkaline activator; Alkali-activated gel; Heavy metal leaching; Reaction products; POLLUTION CONTROL RESIDUES; C-S-H; FLY-ASH; MECHANICAL-PROPERTIES; PLASMA TREATMENT; SODIUM-SULFATE; GEOPOLYMER; GLASS; SLAG; METAKAOLIN;
D O I
10.1016/j.jclepro.2023.136597
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Flue gas residues (FGR), a waste from incineration plant was utilized as an alternative alkaline activator to energy intensive and costly commercial activators. Fly ash (FA) and slag were used as precursors materials along with the FGR to produce low-carbon and cost-effective alkali-activated materials (AAMs). Reaction products and micromechanical properties were investigated by advanced microstructure analysis techniques. Results from the infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and nanoindentation indicated that reaction products were comprised of N-A-S-H gel as a major reaction product along with the hybrid gel (C-N-A-S-H) and C-A-S-H gel. SEM-EDS and nanoindentation results showed that the formation of C-A-S-H gel was directly related to the content of FGR. The increase in volume of Ca-based reaction products (C-N-A-S-H and C-A-S-H) was associated with the activation of slag in presence of Na2SO4. Besides N -A-S-H gel, some new reaction products (zeolite, apatite and berlinite) were also observed from XRD analysis of pastes. The compressive strength of AAMs was in the range of 33.5-39.6 MPa and was in line with microstructure analysis results. Leaching concentrations of Ag, Ba, Cd, Cu and Zn heavy metals in FGR were 0.10, 0.40, 0.63, 0.26 and 1.65 mg/L respectively and below the regulatory limits and it was classified as a non-hazardous material.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Valorization of municipal solid waste incineration fly ash in low-carbon alkali-activated materials
    Xia, Yan
    Liu, Zhenye
    Song, Zhenhao
    Zhao, Ruolin
    Wu, Jinpeng
    Wang, Lei
    Yan, Jianhua
    Chemical Engineering Journal, 2024, 495
  • [2] Valorization of municipal solid waste incineration fly ash in low-carbon alkali-activated materials
    Xia, Yan
    Liu, Zhenye
    Song, Zhenhao
    Zhao, Ruolin
    Wu, Jinpeng
    Wang, Lei
    Yan, Jianhua
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [3] Recycling excavated soil waste into low-carbon alkali-activated materials
    Luan, Chenchen
    Zhou, Ao
    Liu, Tiejun
    Zou, Dujian
    Gao, Pan
    WASTE MANAGEMENT, 2025, 197 : 61 - 75
  • [4] Alkali-activated materials partially activated using flue gas residues: An insight into reaction products
    Ahmad, Muhammad Riaz
    Khan, Mehran
    Wang, Aiguo
    Zhang, Zuhua
    Dai, Jian-Guo
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 371
  • [5] Editorial: The pursuit of low-carbon concretes - alkali-activated cementitious materials
    Hewlett, Peter C.
    MAGAZINE OF CONCRETE RESEARCH, 2022, 74 (19) : 973 - 974
  • [6] Preparation of Low Carbon Silicomanganese Slag-Based Alkali-Activated Materials Using Alkali-Activated Silica Waste
    Zheng, Yang
    Zhang, Zhi-Yuan
    Liu, Yisong
    Zhang, Xiaozhu
    Kang, Shaoguo
    Lv, Leyang
    Zhou, Junbo
    BUILDINGS, 2024, 14 (12)
  • [7] Activated carbon treatment of municipal solid waste incineration flue gas
    Lu, Shengyong
    Ji, Ya
    Buekens, Alfons
    Ma, Zengyi
    Jin, Yuqi
    Li, Xiaodong
    Yan, Jianhua
    WASTE MANAGEMENT & RESEARCH, 2013, 31 (02) : 169 - 177
  • [8] Alkali-activated waste glass as an alternative cement for preparation of potential low-carbon concrete
    Zhu, Weiping
    Wu, Xianpeng
    Pan, Zezhou
    Deng, Xuhua
    Zheng, Chumao
    Qiu, Zhenye
    Wang, Daochu
    Ling, Zao
    Li, Lijuan
    Liu, Feng
    Xiong, Zhe
    CERAMICS INTERNATIONAL, 2024, 50 (15) : 26997 - 27005
  • [9] Development of low-carbon masonry grout mixtures using alkali-activated binder
    Adesina, Adeyemi
    Das, Sreekanta
    MAGAZINE OF CONCRETE RESEARCH, 2022, 74 (03) : 154 - 161
  • [10] Alkali-activated calcined smectite clay blended with waste calcium carbonate as a low-carbon binder
    Valentini, Luca
    Contessi, Silvia
    Dalconi, Maria C.
    Zorzi, Federico
    Garbin, Enrico
    JOURNAL OF CLEANER PRODUCTION, 2018, 184 : 41 - 49