Anomalous recurrence of Markov chains on negatively curved manifolds

被引:0
|
作者
Armstrong, John [1 ,2 ]
King, Tim [1 ,2 ]
机构
[1] Kings Coll London, London, England
[2] Dept Math, Strand Bldg, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
Non-homogeneous random walk; uniform ellipticity; BROWNIAN-MOTION;
D O I
10.1017/jpr.2022.40
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a recurrence-transience classification for discrete-time Markov chains on manifolds with negative curvature. Our classification depends only on geometric quantities associated to the increments of the chain, defined via the Riemannian exponential map. We deduce that a recurrent chain that has zero average drift at every point cannot be uniformly elliptic, unlike in the Euclidean case. We also give natural examples of zero-drift recurrent chains on negatively curved manifolds, including on a stochastically incomplete manifold.
引用
收藏
页码:204 / 222
页数:19
相关论文
共 50 条