Pseudo Electrochemical Impedance Spectroscopy Method for In-Situ Performance and Safety Assessment of Lithium-Ion Battery Energy Storage Systems for Grid-Scale Applications

被引:2
|
作者
Sarlashkar, Jayant V. [1 ]
Surampudi, Bapiraju [1 ]
Chundru, Venkata Rajesh [1 ]
Downing, Walter D., Jr. [1 ]
机构
[1] Southwest Res Inst, San Antonio, TX 78238 USA
关键词
battery energy storage; degradation; safety; lithium plating; fast charging; battery impedance; battery management system; second-life battery;
D O I
10.1109/SysCon53073.2023.10131089
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Battery energy storage system (BESS) is a key enabler of the modern renewable- and inverter-heavy electric grid. It is generally expected [1] that the BESS will see a more demanding duty in the modern grid as it delivers a multitude of ancillary services dispatched simultaneously (stacked duty) and sequentially (mixed duty). Such harsher duty will entail larger operating envelope of timescale, power, and state-of-charge (SOC), and further elevate the issues of BESS performance and safety. Lithium plating (lithium deposition in general) is widely reported as a significant aging and failure mechanism when charging the BESS at high current and high SOC [2], [3]. In this work we describe an extension to the so-called pseudo electrochemical impedance spectroscopy (EIS) method to detect and quantify general degradation in performance and specifically to detect lithium plating. The pseudo-EIS protocol is amenable to implementation in a battery management system (BMS) for real-time assessment of performance and safety. In particular, it enables proactive management of current profile during (fast) charging to trade-off performance and safety. Further, it can also be used offline to gauge state-of-health (SOH) of second-life batteries before redeployment.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems
    Tianmei Chen
    Yi Jin
    Hanyu Lv
    Antao Yang
    Meiyi Liu
    Bing Chen
    Ying Xie
    Qiang Chen
    Transactions of Tianjin University, 2020, 26 : 208 - 217
  • [2] Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems
    Tianmei Chen
    Yi Jin
    Hanyu Lv
    Antao Yang
    Meiyi Liu
    Bing Chen
    Ying Xie
    Qiang Chen
    Transactions of Tianjin University, 2020, (03) : 208 - 217
  • [3] Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems
    Chen, Tianmei
    Jin, Yi
    Lv, Hanyu
    Yang, Antao
    Liu, Meiyi
    Chen, Bing
    Xie, Ying
    Chen, Qiang
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2020, 26 (03) : 208 - 217
  • [4] Overview of Lithium-Ion Grid-Scale Energy Storage Systems
    Arteaga J.
    Zareipour H.
    Thangadurai V.
    Current Sustainable/Renewable Energy Reports, 2017, 4 (4): : 197 - 208
  • [5] Key Challenges for Grid-Scale Lithium-Ion Battery Energy Storage
    Huang, Yimeng
    Li, Ju
    ADVANCED ENERGY MATERIALS, 2022, 12 (48)
  • [6] Explosion hazards study of grid-scale lithium-ion battery energy storage station
    Jin, Yang
    Zhao, Zhixing
    Miao, Shan
    Wang, Qingsong
    Sun, Lei
    Lu, Hongfei
    JOURNAL OF ENERGY STORAGE, 2021, 42
  • [7] Optimal Sizing of Grid-Scale Battery Energy Storage Systems for Stacked Applications
    Alharbi, Abdullah M.
    Gao, David Wenzhong
    Wang, Hongxia
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [8] Grid Inertial Response with Lithium-ion Battery Energy Storage Systems
    Knap, Vaclav
    Sinha, Rakesh
    Swierczynski, Maciej
    Stroe, Daniel-Ioan
    Chaudhary, Sanjay
    2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 1817 - 1822
  • [9] Performance of Inconsistency in Lithium-ion Battery Packs for Battery Energy Storage Systems
    Chen, Man
    Zhang, Baihua
    Li, Yongqi
    Qi, Guoguang
    Yang, Daiming
    Liu, Jianzheng
    2014 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (IEEE PES APPEEC), 2014,
  • [10] Grid connected performance of a household lithium-ion battery energy storage system
    Bila, M.
    Opathella, C.
    Venkatesh, B.
    JOURNAL OF ENERGY STORAGE, 2016, 6 : 178 - 185