On the Asymptotic Expansions of the Proper Harmonic Maps Between Balls in Bergman Metrics

被引:0
|
作者
Chen, Ren-Yu [1 ]
Li, Song-Ying [2 ]
Luo, Jie [3 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300354, Peoples R China
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[3] Fujian Normal Univ, Dept Math, Fuzhou 350117, Fujian, Peoples R China
关键词
Harmonic maps; Asymptotic expansion; Bergman metric; DIRICHLET PROBLEM; REGULARITY; UNIQUENESS; MANIFOLDS; EXISTENCE; RIGIDITY; THEOREM;
D O I
10.1007/s12220-022-01020-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-n be the unit ball in C-n with the Bergman metric g and h is the Bergman metric on B-m. Let u : (B-n, g) -> (B-m, h) be any harmonic map with phi(0)=u|& part;B-n is an element of C-infinity(& part;B-n,& part;B-m). In this paper, we provide an asymptotic expansion formula for the above harmonic map u for a large class of phi(0)is an element of C-infinity(& part;B-n,& part;B-m).
引用
收藏
页数:48
相关论文
共 50 条