FedSuper: A Byzantine-Robust Federated Learning Under Supervision

被引:0
|
作者
Zhao, Ping [1 ,2 ]
Jiang, Jin [1 ,2 ]
Zhang, Guanglin [1 ,2 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai, Peoples R China
[2] Donghua Univ, Coll Informat Sci & Technol, 2999 Renmin North Rd, Shanghai 201620, Peoples R China
基金
中国国家自然科学基金;
关键词
Federated learning; Byzantine attack; Byzantine ratio; non-IID; MOBILITY;
D O I
10.1145/3630099
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) is a machine learning setting where multiple worker devices collaboratively train a model under the orchestration of a central server, while keeping the training data local. However, owing to the lack of supervision on worker devices, FL is vulnerable to Byzantine attacks where the worker devices controlled by an adversary arbitrarily generate poisoned local models and send to FL server, ultimately degrading the utility (e.g., model accuracy) of the global model. Most of existing Byzantine-robust algorithms, however, cannot well react to the threatening Byzantine attacks when the ratio of compromised worker devices (i.e., Byzantine ratio) is over 0.5 and worker devices ' local training datasets are not independent and identically distributed (non-IID). We propose a novel Byzantine-robust Federated Learning under Supervision (FedSuper), which can maintain robustness against Byzantine attacks even in the threatening scenario with a very high Byzantine ratio (0.9 in our experiments) and the largest level of non-IID data (1.0 in our experiments) when the state-of-the-art Byzantine attacks are conducted. The main idea of FedSuper is that the FL server supervises worker devices via injecting a shadow dataset into their local training processes. Moreover, according to the local models ' accuracies or losses on the shadow dataset, we design a Local Model Filter to remove poisoned local models and output an optimal global model. Extensive experimental results on three real-world datasets demonstrate the effectiveness and the superior performance of FedSuper, compared to five latest Byzantine-robust FL algorithms and two baselines, in defending
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Byzantine-Robust Aggregation for Federated Learning with Reinforcement Learning
    Yan, Sizheng
    Du, Junping
    Xue, Zhe
    Li, Ang
    WEB AND BIG DATA, APWEB-WAIM 2024, PT IV, 2024, 14964 : 152 - 166
  • [2] AFLGuard: Byzantine-robust Asynchronous Federated Learning
    Fang, Minghong
    Liu, Jia
    Gong, Neil Zhenqiang
    Bentley, Elizabeth S.
    PROCEEDINGS OF THE 38TH ANNUAL COMPUTER SECURITY APPLICATIONS CONFERENCE, ACSAC 2022, 2022, : 632 - 646
  • [3] Differentially Private Byzantine-Robust Federated Learning
    Ma, Xu
    Sun, Xiaoqian
    Wu, Yuduo
    Liu, Zheli
    Chen, Xiaofeng
    Dong, Changyu
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (12) : 3690 - 3701
  • [4] Byzantine-robust federated learning with ensemble incentive mechanism
    Zhao, Shihai
    Pu, Juncheng
    Fu, Xiaodong
    Liu, Li
    Dai, Fei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 159 : 272 - 283
  • [5] CareFL: Contribution Guided Byzantine-Robust Federated Learning
    Dong, Qihao
    Yang, Shengyuan
    Dai, Zhiyang
    Gao, Yansong
    Wang, Shang
    Cao, Yuan
    Fu, Anmin
    Susilo, Willy
    IEEE Transactions on Information Forensics and Security, 2024, 19 : 9714 - 9729
  • [6] Privacy-preserving Byzantine-robust federated learning
    Ma, Xu
    Zhou, Yuqing
    Wang, Laihua
    Miao, Meixia
    COMPUTER STANDARDS & INTERFACES, 2022, 80
  • [7] Towards Federated Learning with Byzantine-Robust Client Weighting
    Portnoy, Amit
    Tirosh, Yoav
    Hendler, Danny
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [8] Privacy-Preserving and Byzantine-Robust Federated Learning
    Dong, Caiqin
    Weng, Jian
    Li, Ming
    Liu, Jia-Nan
    Liu, Zhiquan
    Cheng, Yudan
    Yu, Shui
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (02) : 889 - 904
  • [9] BOBA: Byzantine-Robust Federated Learning with Label Skewness
    Bao, Wenxuan
    Wu, Jun
    He, Jingrui
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [10] Byzantine-Robust Federated Learning through Dynamic Clustering
    Wang, Hanyu
    Wang, Liming
    Li, Hongjia
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 222 - 230