Feature selection for driving style and skill clustering using naturalistic driving data and driving behavior questionnaire

被引:13
|
作者
Chen, Yao [1 ]
Wang, Ke [1 ]
Lu, Jian John [1 ]
机构
[1] Tongji Univ, Coll Transportat Engn, Key Lab Rd & Traff Engn, State Minist Educ, Shanghai 201804, Peoples R China
来源
关键词
Driving behavior; Feature selection; Cluster analysis; Driving behavior questionnaire; Driving skill; Driving style; DRIVER BEHAVIOR; WAVELET TRANSFORM; SPECTRAL ENTROPY; INVENTORY; AGE; CLASSIFICATION; PERFORMANCE; DIMENSIONS; CONSTRUCT; PATTERNS;
D O I
10.1016/j.aap.2023.107022
中图分类号
TB18 [人体工程学];
学科分类号
1201 ;
摘要
Driver's driving style and driving skill have an essential influence on traffic safety, capacity, and efficiency. Through clustering algorithms, extensive studies explore the risk assessment, classification, and recognition of driving style and driving skill. This paper proposes a feature selection method for driving style and skill clus-tering. We create a supervised machine learning model of driver identification for driving behavior data with no ground truth labels on driving style and driving skill. The key features are selected based on permutation importance with the underlying assumption that the key features for clustering should also play an important role in characterizing individual drivers. The proposed method is tested on naturalistic driving data. We intro-duce 18 feature extraction methods and generate 72 feature candidates. We find five key features: longitudinal acceleration, frequency centroid of longitudinal acceleration, shape factor of lateral acceleration, root mean square of lateral acceleration, and standard deviation of speed. With the key features, drivers are clustered into three groups: novice, experienced cautious, and experienced reckless drivers. The ability of each feature to describe individuals' driving style and skill is evaluated using the Driving Behavior Questionnaire (DBQ). For each group, the driver's response to DBQ key questions and their distribution of key features are analyzed to prove the validity of the feature selection result. The feature selection method has the potential to understand driver's characteristics better and improve the accuracy of driving behavior modeling.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Driving Style Clustering using Naturalistic Driving Data
    Chen, Kuan-Ting
    Chen, Huei-Yen Winnie
    [J]. TRANSPORTATION RESEARCH RECORD, 2019, 2673 (06) : 176 - 188
  • [2] Characterisation of motorway driving style using naturalistic driving data
    Itkonen, Teemu H.
    Lehtonen, Esko
    Selpi
    [J]. TRANSPORTATION RESEARCH PART F-TRAFFIC PSYCHOLOGY AND BEHAVIOUR, 2020, 69 : 72 - 79
  • [3] Driving Style Recognition Based on Lane Change Behavior Analysis Using Naturalistic Driving Data
    Gao, Zhen
    Liang, Yongchao
    Zheng, Jiangyu
    Chen, Junyi
    [J]. CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 4449 - 4461
  • [4] Using naturalistic driving data to identify driving style based on longitudinal driving operation conditions
    Lyu, Nengchao
    Wang, Yugang
    Wu, Chaozhong
    Peng, Lingfeng
    Thomas, Alieu Freddie
    [J]. Journal of Intelligent and Connected Vehicles, 2022, 5 (01): : 17 - 35
  • [5] Revision of the driver behavior questionnaire for Chinese drivers? aberrant driving behaviors using naturalistic driving data
    Jiao, Yujun
    Wang, Xuesong
    Hurwitz, David
    Hu, Gengdan
    Xu, Xiaoyan
    Zhao, Xudong
    [J]. ACCIDENT ANALYSIS AND PREVENTION, 2023, 187
  • [6] Driving Style Recognition of Taxi Drivers Based on Naturalistic Driving Data
    Yan, Pengwei
    Zhao, Xiaohua
    Yao, Ying
    Ma, Xiaogang
    [J]. CICTP 2023: INNOVATION-EMPOWERED TECHNOLOGY FOR SUSTAINABLE, INTELLIGENT, DECARBONIZED, AND CONNECTED TRANSPORTATION, 2023, : 1225 - 1234
  • [7] Studying Driving Behavior on Horizontal Curves using Naturalistic Driving Study Data
    Dhahir, Bashar
    Hassan, Yasser
    [J]. TRANSPORTATION RESEARCH RECORD, 2018, 2672 (17) : 83 - 95
  • [8] GIS Mapping of Driving Behavior Based on Naturalistic Driving Data
    Balsa-Barreiro, Jose
    Valero-Mora, Pedro M.
    Berne-Valero, Jose L.
    Varela-Garcia, Fco-Alberto
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (05):
  • [9] ConvMLP for Driving Behavior Detection from Naturalistic Driving Data
    Gao, Jun
    Yi, Jiangang
    Murphey, Yi Lu
    [J]. 2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 640 - 645
  • [10] Driving style classification for vehicle-following with unlabeled naturalistic driving data
    Zhang, Xinjie
    Huang, Yiqing
    Guo, Konghui
    Li, Wentao
    [J]. 2019 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2019,