The global existence of strong solutions for a non-isothermal ideal gas system

被引:0
|
作者
Han, Bin [1 ]
Lai, Ningan [2 ]
Tarfulea, Andrei [3 ]
机构
[1] Hangzhou Dianzi Univ, Dept Math, Hangzhou 310018, Peoples R China
[2] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Peoples R China
[3] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
基金
美国国家科学基金会;
关键词
thermal fluid equations; energy-variational method; well-posedness theory for PDE; paraproduct calculus;
D O I
10.1007/s10473-024-0306-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the global existence of strong solutions to a non-isothermal ideal gas model derived from an energy variational approach. We first show the global well-posedness in the Sobolev space H2 (Double-struck capital R3) for solutions near equilibrium through iterated energy-type bounds and a continuity argument. We then prove the global well-posedness in the critical Besov space B2,13/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{\boldsymbol{B}}_{\boldsymbol{2,1}}<^>{\boldsymbol{3/2}}$$\end{document} by showing that the linearized operator is a contraction mapping under the right circumstances.
引用
收藏
页码:865 / 886
页数:22
相关论文
共 50 条