SLiM-binding pockets: an attractive target for broad-spectrum antivirals

被引:8
|
作者
Simonetti, Leandro [1 ]
Nilsson, Jakob [2 ]
McInerney, Gerald [3 ]
Ivarsson, Ylva [1 ]
Davey, Norman E. [4 ]
机构
[1] Dept Chem BMC, Husargatan 3, S-75123 Uppsala, Sweden
[2] Univ Copenhagen, Novo Nord Fdn Ctr Prot Res, Fac Hlth & Med Sci, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
[3] Karolinska Inst, Dept Microbiol Tumor & Cell Biol, Stockholm, Sweden
[4] Inst Canc Res, Div Canc Biol, 237 Fulham Rd, London SW3 6JB, England
关键词
PROTEIN; EBOLA; IDENTIFICATION; INNOVATION; LEUKEMIA; MOTIFS; DOMAIN;
D O I
10.1016/j.tibs.2022.12.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Short linear motif (SLiM)-mediated interactions offer a unique strategy for viral intervention due to their compact interfaces, ease of convergent evolution, and key functional roles. Consequently, many viruses extensively mimic host SLiMs to hijack or deregulate cellular pathways and the same motif-binding pocket is often targeted by numerous unrelated viruses. A toolkit of therapeutics targeting commonly mimicked SLiMs could provide prophylactic and therapeutic broadspectrum antivirals and vastly improve our ability to treat ongoing and future viral outbreaks. In this opinion article, we discuss the therapeutic relevance of SLiMs, advocating their suitability as targets for broad-spectrum antiviral inhibitors.
引用
收藏
页码:420 / 427
页数:8
相关论文
共 50 条
  • [1] Exposed target for broad-spectrum antivirals
    Tse, Man Tsuey
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2009, 8 (01) : 19 - 19
  • [2] Exposed target for broad-spectrum antivirals
    Man Tsuey Tse
    [J]. Nature Reviews Drug Discovery, 2009, 8 : 19 - 19
  • [3] Broad-spectrum antivirals
    Benson J. Edagwa
    Howard E. Gendelman
    [J]. Nature Materials, 2018, 17 : 114 - 116
  • [4] Broad-spectrum antivirals
    Edagwa, Benson J.
    Gendelman, Howard E.
    [J]. NATURE MATERIALS, 2018, 17 (02) : 114 - 116
  • [5] Modified cyclodextrins as broad-spectrum antivirals
    Jones, Samuel T.
    Cagno, Valeria
    Janecek, Matej
    Ortiz, Daniel
    Gasilova, Natalia
    Piret, Jocelyne
    Gasbarri, Matteo
    Constant, David A.
    Han, Yanxiao
    Vukovi, Lela
    Kral, Petr
    Kaiser, Laurent
    Huang, Song
    Constant, Samuel
    Kirkegaard, Karla
    Boivin, Guy
    Stellacci, Francesco
    Tapparel, Caroline
    [J]. SCIENCE ADVANCES, 2020, 6 (05):
  • [6] The future of antivirals: broad-spectrum inhibitors
    Debing, Yannick
    Neyts, Johan
    Delang, Leen
    [J]. CURRENT OPINION IN INFECTIOUS DISEASES, 2015, 28 (06) : 596 - 602
  • [7] BIKE regulates dengue virus infection and is a cellular target for broad-spectrum antivirals
    Pu, Szuyuan
    Schor, Stanford
    Karim, Marwah
    Saul, Sirle
    Robinson, Makeda
    Kumar, Sathish
    Prugar, Laura, I
    Dorosky, Danielle E.
    Brannan, Jennifer
    Dye, John M.
    Einav, Shirit
    [J]. ANTIVIRAL RESEARCH, 2020, 184
  • [8] A Mechanistic Paradigm for Broad-Spectrum Antivirals that Target Virus-Cell Fusion
    Vigant, Frederic
    Lee, Jihye
    Hollmann, Axel
    Tanner, Lukas B.
    Ataman, Zeynep Akyol
    Yun, Tatyana
    Shui, Guanghou
    Aguilar, Hector C.
    Zhang, Dong
    Meriwether, David
    Roman-Sosa, Gleyder
    Robinson, Lindsey R.
    Juelich, Terry L.
    Buczkowski, Hubert
    Chou, Sunwen
    Castanho, Miguel A. R. B.
    Wolf, Mike C.
    Smith, Jennifer K.
    Banyard, Ashley
    Kielian, Margaret
    Reddy, Srinivasa
    Wenk, Markus R.
    Selke, Matthias
    Santos, Nuno C.
    Freiberg, Alexander N.
    Jung, Michael E.
    Lee, Benhur
    [J]. PLOS PATHOGENS, 2013, 9 (04):
  • [9] Broad-Spectrum Antivirals and Antiviral Drug Combinations
    Oksenych, Valentyn
    Kainov, Denis E.
    [J]. VIRUSES-BASEL, 2022, 14 (02):
  • [10] Engineered T cells as broad-spectrum antivirals
    Alexandra Flemming
    [J]. Nature Reviews Drug Discovery, 2014, 13 (9) : 654 - 654