On the Almost Reducibility Conjecture

被引:2
|
作者
Ge, Lingrui [1 ]
机构
[1] Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
关键词
CONTINUOUS-SPECTRUM; EXPONENTS; DUALITY;
D O I
10.1007/s00039-024-00671-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Avila's Almost Reducibility Conjecture (ARC) is a powerful statement linking purely analytic and dynamical properties of analytic one-frequency \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$SL(2,{\mathbb{R}})$\end{document} cocycles. It is also a fundamental tool in the study of spectral theory of analytic one-frequency Schrodinger operators, with many striking consequences, allowing to give a detailed characterization of the subcritical region. Here we give a proof, completely different from Avila's, for the important case of Schrodinger cocycles with trigonometric polynomial potentials and non-exponentially approximated frequencies, allowing, in particular, to obtain all the desired spectral consequences in this case.
引用
收藏
页码:32 / 59
页数:28
相关论文
共 50 条