Statistical learning for species distribution models in ecological studies

被引:0
|
作者
Komori, Osamu [1 ]
Saigusa, Yusuke [2 ]
Eguchi, Shinto [3 ]
机构
[1] Seikei Univ, Dept Comp & Informat Sci, 3-3-1 Kichijoji Kitamachi, Musashino, Tokyo 1808633, Japan
[2] Yokohama City Univ, Sch Med, Dept Biostat, 3-9 Fukuura,Kanazawa, Yokohama, Kanagawa 2360004, Japan
[3] Inst Stat Math, Res Ctr Med & Hlth Data Sci, 10-3 Midori Cho, Tachikawa, Tokyo 1908562, Japan
关键词
Information divergence; Integrated species distribution models; Poisson point process; Species distribution models; POINT PROCESS MODELS; LOGISTIC-REGRESSION; ROBUST; EQUIVALENCE; INTERFACE; MAXENT; BIAS;
D O I
10.1007/s42081-023-00206-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss species distribution models (SDM) for biodiversity studies in ecology. SDM plays an important role to estimate abundance of a species based on environmental variables that are closely related with the habitat of the species. The resultant habitat map indicates areas where the species is likely to live, hence it is essential for conservation planning and reserve selection. We especially focus on a Poisson point process and clarify relations with other statistical methods. Then we discuss a Poisson point process from a view point of information divergence, showing the Kullback-Leibler divergence of density functions reduces to the extended Kullback-Leibler divergence of intensity functions. This property enables us to extend the Poisson point process to that derived from other divergence such as beta and gamma divergences. Finally, we discuss integrated SDM and evaluate the estimating performance based on the Fisher information matrices.
引用
收藏
页码:803 / 826
页数:24
相关论文
共 50 条
  • [1] Statistical learning for species distribution models in ecological studies
    Osamu Komori
    Yusuke Saigusa
    Shinto Eguchi
    Japanese Journal of Statistics and Data Science, 2023, 6 : 803 - 826
  • [2] Incorporating ecological principles into statistical models for the prediction of species' distribution and abundance
    Stewart-Koster, Ben
    Boone, Edward L.
    Kennard, Mark J.
    Sheldon, Fran
    Bunn, Stuart E.
    Olden, Julian D.
    ECOGRAPHY, 2013, 36 (03) : 342 - 353
  • [3] The effects of species' range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact?
    McPherson, JM
    Jetz, W
    Rogers, DJ
    JOURNAL OF APPLIED ECOLOGY, 2004, 41 (05) : 811 - 823
  • [4] Ecological relevance of performance criteria for species distribution models
    Mouton, Ans M.
    De Baets, Bernard
    Goethals, Peter L. M.
    ECOLOGICAL MODELLING, 2010, 221 (16) : 1995 - 2002
  • [5] A comparison of machine learning and statistical species distribution models: Quantifying overfitting supports model interpretation
    Ramampiandra, Emma Chollet
    Scheidegger, Andreas
    Wydler, Jonas
    Schuwirth, Nele
    ECOLOGICAL MODELLING, 2023, 481
  • [6] Evaluating the ecological realism of plant species distribution models with ecological indicator values
    Hellegers, Marion
    Ozinga, Wim A.
    van Hinsberg, Arjen
    Huijbregts, Mark A. J.
    Hennekens, Stephan M.
    Schaminee, Joop H. J.
    Dengler, Jurgen
    Schipper, Aafke M.
    ECOGRAPHY, 2020, 43 (01) : 161 - 170
  • [7] Exploring Current Challenges for Models of Species Distribution and Ecological Niches
    De Marco Junior, Paulo
    NATUREZA & CONSERVACAO, 2012, 10 (02): : 99 - 101
  • [8] Ecological principles of species distribution models: the habitat matching rule
    Cassini, Marcelo H.
    JOURNAL OF BIOGEOGRAPHY, 2011, 38 (11) : 2057 - 2065
  • [9] Bridging mechanistic conceptual models and statistical species distribution models of riverine fish
    Caradima, Bogdan
    Scheidegger, Andreas
    Brodersen, Jakob
    Schuwirth, Nele
    ECOLOGICAL MODELLING, 2021, 457