The interpolating element-free Galerkin method for the p-Laplace double obstacle mixed complementarity problem

被引:0
|
作者
Ding, Rui [1 ]
Ding, Chaoren [1 ]
Shen, Quan [2 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
[2] Soochow Univ, Sch Rail Transportat, Suzhou 215131, Peoples R China
基金
中国国家自然科学基金;
关键词
Interpolating element-free Galerkin method; p-Laplace; Double obstacle mixed complementarity problem; Power penalty method; POWER PENALTY METHOD; VARIATIONAL INEQUALITY; CONVERGENCE ANALYSIS; IEFG METHOD; APPROXIMATION;
D O I
10.1007/s10898-022-01260-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, the interpolating element-free Galerkin method is presented for thep-Laplace double obstacle mixed complementarity problem when 1 < p < 2 and p > 2. First, anonlinear power penalty equation is obtained by a power penalty approximation method andthe existence and uniqueness of the solution to the power penalty equation are proved when1 < p < 2andp > 2. The convergence of the power penalty solution to the original prob-lem and the penalty estimates are analyzed. Second, the interpolating element-free Galerkin method is constructed for the nonlinear power penalty equation. The numerical implemen-tation is introduced in detail and the convergence of the interpolating element-free Galerkin method is also given. Error estimates indicate that the convergence order depends on notonly the spatial stephand the number of bases functionsmin the interpolating element-free Galerkin method, but also the index k in the penalty term, the penalty factor lambda andp.Fordifferentp, the method that how to choose the optimalkand lambda is also given. Numerical examples verify error estimates and illustrate the influence of each parameter on the solution.
引用
收藏
页码:781 / 820
页数:40
相关论文
共 50 条
  • [1] The interpolating element-free Galerkin method for the p-Laplace double obstacle mixed complementarity problem
    Rui Ding
    Chaoren Ding
    Quan Shen
    [J]. Journal of Global Optimization, 2023, 86 : 781 - 820
  • [2] An element-free Galerkin method for the obstacle problem
    Li, Xiaolin
    Dong, Haiyun
    [J]. APPLIED MATHEMATICS LETTERS, 2021, 112
  • [3] An improved interpolating element-free Galerkin method for elasticity
    孙凤欣
    王聚丰
    程玉民
    [J]. Chinese Physics B, 2013, 22 (12) : 47 - 54
  • [4] Interpolating element-free Galerkin method for viscoelasticity problems
    Zhang Peng-Xuan
    Peng Miao-Juan
    [J]. ACTA PHYSICA SINICA, 2019, 68 (17)
  • [5] An improved interpolating element-free Galerkin method for elasticity
    Sun Feng-Xin
    Wang Ju-Feng
    Cheng Yu-Min
    [J]. CHINESE PHYSICS B, 2013, 22 (12)
  • [6] The interpolating element-free Galerkin method for elastic large deformation problems
    WU Qiang
    PENG Piao Piao
    CHENG Yu Min
    [J]. Science China(Technological Sciences), 2021, (02) : 364 - 374
  • [7] The interpolating element-free Galerkin method for elastic large deformation problems
    WU Qiang
    PENG Piao Piao
    CHENG Yu Min
    [J]. Science China Technological Sciences, 2021, 64 (02) : 364 - 374
  • [8] The interpolating element-free Galerkin method for elastic large deformation problems
    Wu, Qiang
    Peng, PiaoPiao
    Cheng, YuMin
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2021, 64 (02) : 364 - 374
  • [9] The interpolating element-free Galerkin method for elastic large deformation problems
    Qiang Wu
    PiaoPiao Peng
    YuMin Cheng
    [J]. Science China Technological Sciences, 2021, 64 : 364 - 374
  • [10] A generalized element-free Galerkin method for Stokes problem
    Zhang, Tao
    Li, Xiaolin
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (09) : 3127 - 3138