HIERARCHICAL FEATURE FUSION TRANSFORMER FOR NO-REFERENCE IMAGE QUALITY ASSESSMENT

被引:1
|
作者
Wang, Zesheng [1 ]
Wu, Wei [2 ]
Yuan, Liang [1 ]
Sun, Wei [3 ]
Chen, Ying [2 ]
Li, Kai [2 ]
Zhai, Guangtao [3 ]
机构
[1] Beijing Univ Chem Technol, Beijing, Peoples R China
[2] Alibaba Grp, Hangzhou, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Image Commun & Informat Proc, Shanghai, Peoples R China
关键词
image quality assessment; feature fusion; hybrid model; Transformer;
D O I
10.1109/ICIP49359.2023.10222634
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, increasing interest has been drawn in Transformer-based models for No-reference Image Quality Assessment (NR-IQA), especially for the hybrid approach. The hybrid approach tend to apply Transformer to aggregate quality information from feature maps extracted by Convolutional Neural Networks (CNN). However, existing methods cannot fully utilize the information of hierarchical features extracted by the deep neural network, resulting in the limited performance of image quality evaluation. In this work, we propose a novel Hierarchical Feature Fusion Transformer for NR-IQA (HiFFTiq), which is able to effectively exploit complementary strengths of features extracted by different layers. Further, we propose a new Uniform Partition Pooling (UPP) which can reduce the resolution of input features via uniform partitions and can well retain the quality-related information compared to the traditional pooling method Sliding Window Pooling (SWP). The results of experiment demonstrate that HiFFTiq leads to improvements of performance over the state-of-the-art methods on three large scale NR-IQA datasets.
引用
收藏
页码:2205 / 2209
页数:5
相关论文
共 50 条
  • [1] No-reference image quality assessment based on feature tokenizer and Transformer
    Song, Wei
    Li, Jia-jin
    Liu, Xiao-chen
    Liu, Zhi-xiang
    Shi, Shao-hua
    [J]. CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (03) : 356 - 367
  • [2] A Multibranch Network With Multilayer Feature Fusion for No-Reference Image Quality Assessment
    Zhao, Wenqing
    Li, Mengwei
    Xu, Lijiao
    Sun, Yue
    Zhao, Zhenbing
    Zhai, Yongjie
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [3] No-Reference Image Quality Assessment Based on Dual-Domain Feature Fusion
    Cui, Yueli
    [J]. ENTROPY, 2020, 22 (03)
  • [4] Hierarchical Curriculum Learning for No-Reference Image Quality Assessment
    Wang, Juan
    Chen, Zewen
    Yuan, Chunfeng
    Li, Bing
    Ma, Wentao
    Hu, Weiming
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (11) : 3074 - 3093
  • [5] Hierarchical Curriculum Learning for No-Reference Image Quality Assessment
    Juan Wang
    Zewen Chen
    Chunfeng Yuan
    Bing Li
    Wentao Ma
    Weiming Hu
    [J]. International Journal of Computer Vision, 2023, 131 : 3074 - 3093
  • [6] Feature rectification and enhancement for no-reference image quality assessment
    Wu, Wei
    Huang, Daoquan
    Yao, Yang
    Shen, Zhuonan
    Zhang, Hua
    Yan, Chenggang
    Zheng, Bolun
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 98
  • [7] Feature rectification and enhancement for no-reference image quality assessment
    Wu, Wei
    D., Huang
    Y., Yao
    Z., Shen
    H., Zhang
    C., Yan
    B., Zheng
    [J]. Journal of Visual Communication and Image Representation, 2024, 98
  • [8] No-Reference Stereo Image Quality Assessment Based on Image Fusion
    Huang Shuyu
    Sang Qingbing
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (07)
  • [9] No-reference image quality assessment using fusion metric
    Jayashri V. Bagade
    Kulbir Singh
    Y. H. Dandawate
    [J]. Multimedia Tools and Applications, 2020, 79 : 2109 - 2125
  • [10] No-reference image quality assessment using fusion metric
    Bagade, Jayashri V.
    Singh, Kulbir
    Dandawate, Y. H.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (3-4) : 2109 - 2125