Depth Estimation from Indoor Panoramas with Neural Scene Representation

被引:2
|
作者
Chang, Wenjie [1 ]
Zhang, Yueyi [1 ]
Xiong, Zhiwei [1 ]
机构
[1] Univ Sci & Technol China, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52729.2023.00093
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Depth estimation from indoor panoramas is challenging due to the equirectangular distortions of panoramas and inaccurate matching. In this paper, we propose a practical framework to improve the accuracy and efficiency of depth estimation from multi-view indoor panoramic images with the Neural Radiance Field technology. Specifically, we develop two networks to implicitly learn the Signed Distance Function for depth measurements and the radiance field from panoramas. We also introduce a novel spherical position embedding scheme to achieve high accuracy. For better convergence, we propose an initialization method for the network weights based on the Manhattan World Assumption. Furthermore, we devise a geometric consistency loss, leveraging the surface normal, to further refine the depth estimation. The experimental results demonstrate that our proposed method outperforms state-of-the-art works by a large margin in both quantitative and qualitative evaluations. Our source code is available at https://github.com/WJ-Chang-42/IndoorPanoDepth.
引用
收藏
页码:899 / 908
页数:10
相关论文
共 50 条
  • [1] Distortion-aware Depth Estimation with Gradient Priors from Panoramas of Indoor Scenes
    Yin, Ruihong
    Karaoglu, Sezer
    Gevers, Theo
    [J]. 2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 134 - 143
  • [2] FLOOR DETECTION BASED DEPTH ESTIMATION FROM A SINGLE INDOOR SCENE
    Chun, Changhwan
    Park, Dongjin
    Kim, Wonjun
    Kim, Changick
    [J]. 2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3358 - 3362
  • [3] Indoor Scene Structure Analysis for Single Image Depth Estimation
    Zhuo, Wei
    Salzmann, Mathieu
    He, Xuming
    Liu, Miaomiao
    [J]. 2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 614 - 622
  • [4] Efficient dense depth estimation from dense multiperspective panoramas
    Li, Y
    Tang, CK
    Shum, HY
    [J]. EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, 2001, : 119 - 126
  • [5] FS-Depth: Focal-and-Scale Depth Estimation From a Single Image in Unseen Indoor Scene
    Wei, Chengrui
    Yang, Meng
    He, Lei
    Zheng, Nanning
    [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34 (11) : 10604 - 10617
  • [6] OmniDepth: Dense Depth Estimation for Indoors Spherical Panoramas
    Zioulis, Nikolaos
    Karakottas, Antonis
    Zarpalas, Dimitrios
    Daras, Petros
    [J]. COMPUTER VISION - ECCV 2018, PT VI, 2018, 11210 : 453 - 471
  • [7] Indoor Scene Layout Estimation from a Single Image
    Lin, Hung Jin
    Huang, Sheng-Wei
    Lai, Shang-Hong
    Chiang, Chen-Kuo
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 842 - 847
  • [8] Road Scene Depth Estimation Based on Deep Convolutional Neural Networks
    Yuan Jianzhong
    Zhou Wujie
    Pan Ting
    Gu Pengli
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (08)
  • [9] An Improved Indoor Depth Estimation Method Using Convolutional Neural Networks
    Liang, Yu
    Zhang, Jinming
    Zhang, Wei
    [J]. Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2020, 53 (08): : 840 - 846
  • [10] Neural scene representation and rendering
    Eslami, S. M. Ali
    Rezende, Danilo Jimenez
    Besse, Frederic
    Viola, Fabio
    Morcos, Ari S.
    Garnelo, Marta
    Ruderman, Avraham
    Rusu, Andrei A.
    Danihelka, Ivo
    Gregor, Karol
    Reichert, David P.
    Buesing, Lars
    Weber, Theophane
    Vinyals, Oriol
    Rosenbaum, Dan
    Rabinowitz, Neil
    King, Helen
    Hillier, Chloe
    Botvinick, Matt
    Wierstra, Daan
    Kavukcuoglu, Koray
    Hassabis, Demis
    [J]. SCIENCE, 2018, 360 (6394) : 1204 - +