A Deep Learning Approach for Predicting Multiple Sclerosis

被引:3
|
作者
Ponce de Leon-Sanchez, Edgar Rafael [1 ]
Dominguez-Ramirez, Omar Arturo [2 ]
Herrera-Navarro, Ana Marcela [1 ]
Rodriguez-Resendiz, Juvenal [3 ]
Paredes-Orta, Carlos [4 ]
Mendiola-Santibanez, Jorge Domingo [3 ]
机构
[1] Univ Autonoma Queretaro, Fac Informat, Santiago De Queretaro 76230, Queretaro, Mexico
[2] Univ Autonoma Estado Hidalgo, Ctr Invest Tecnol Informac & Sistemas, Pachuca 42039, Mexico
[3] Univ Autonoma Queretaro, Fac Ingn, Santiago De Queretaro 76010, Queretaro, Mexico
[4] Ctr Invest Opt, Aguascalientes 20200, Mexico
关键词
deep learning; artificial neural network; multiple sclerosis;
D O I
10.3390/mi14040749
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper proposes a deep learning model based on an artificial neural network with a single hidden layer for predicting the diagnosis of multiple sclerosis. The hidden layer includes a regularization term that prevents overfitting and reduces the model complexity. The purposed learning model achieved higher prediction accuracy and lower loss than four conventional machine learning techniques. A dimensionality reduction method was used to select the most relevant features from 74 gene expression profiles for training the learning models. The analysis of variance test was performed to identify the statistical difference between the mean of the proposed model and the compared classifiers. The experimental results show the effectiveness of the proposed artificial neural network.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Deep Learning Approach to Predicting Disease Progression in Multiple Sclerosis Using Magnetic Resonance Imaging
    Storelli, Loredana
    Azzimonti, Matteo
    Gueye, Mor
    Vizzino, Carmen
    Preziosa, Paolo
    Tedeschi, Gioachino
    De Stefano, Nicola
    Pantano, Patrizia
    Filippi, Massimo
    Rocca, Maria A.
    [J]. INVESTIGATIVE RADIOLOGY, 2022, 57 (07) : 423 - 432
  • [2] A deep learning approach for multiple sclerosis lesion segmentation
    Valverde, S.
    Cabezas, M.
    Roura, E.
    Gonzalez, S.
    Pareto, D.
    Vilanova, J. C.
    Ramio-Torrenta, L.
    Rovira, A.
    Oliver, A.
    Llado, X.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2017, 23 : 531 - 532
  • [3] A Deep-Learning Approach to Predicting Disease Progression in Multiple Sclerosis Using Magnetic Resonance Imaging
    Storelli, L.
    Azzimonti, M.
    Gueye, M.
    Vizzino, C.
    Preziosa, P.
    Tedeschi, G.
    De Stefano, N.
    Pantano, P.
    Filippi, M.
    Rocca, M.
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 : 118 - 119
  • [4] A Deep Learning Classification Model for Predicting Brain Atrophy in Multiple Sclerosis
    Zhan, Geng
    Wang, Dongang
    Cabezas, Mariano
    Beadnall, Heidi
    Kyle, Kain
    Ly, Linda
    Kalincik, Tomas
    Barnett, Michael
    Wang, Chenyu
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2023, 29 (07) : NP41 - NP41
  • [5] Collaborative study in deep learning for predicting disease activity in multiple sclerosis
    Chien, C.
    Eitel, F.
    Brandt, A.
    Paul, F.
    Ritter, K.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2019, 25 : 935 - 936
  • [6] Predicting disease course in Multiple Sclerosis using deep learning on clinical data
    Sreenivasan, Akshai Parakkal
    Burman, Joachim
    Kultima, Kim
    Spjuth, Ola
    Vaivade, Aina
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2023, 29 : 22 - 22
  • [7] A Deep Learning Approach to Diagnosing Multiple Sclerosis from Smartphone Data
    Schwab, Patrick
    Karlen, Walter
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (04) : 1284 - 1291
  • [8] A Vision-Based Framework for Predicting Multiple Sclerosis and Parkinson's Disease Gait Dysfunctions-A Deep Learning Approach
    Kaur, Rachneet
    Motl, Robert W. W.
    Sowers, Richard
    Hernandez, Manuel E. E.
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (01) : 190 - 201
  • [9] Deep Learning Approach for Predicting Psychodiagnosis
    Samia, Zouaoui
    Chahinez, Khamari
    [J]. ACTA INFORMATICA PRAGENSIA, 2024, 13 (02) : 288 - 307
  • [10] Predicting cognitive outcomes using deep learning derived brain age in people with multiple sclerosis
    Ujhelyi, B.
    Nygaard, G. Owren
    Landro, N. Inge
    Brune, S.
    Leonardsen, E. H.
    Sowa, P.
    Celius, E. Gulowsen
    Beyer, M. Kristiansen
    Harbo, H. Flinstad
    Hogestol, E. August
    [J]. EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 : 738 - 738