Standing Waves of Fractional Schrödinger Equations with Potentials and General Nonlinearities

被引:0
|
作者
Li, Zaizheng [1 ,2 ]
Zhang, Qidi [3 ]
Zhang, Zhitao [4 ,5 ,6 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
[2] Hebei Ctr Appl Math, Shijiazhuang 050024, Hebei, Peoples R China
[3] Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
[5] Chinese Acad Sci, Acad Math & Syst Sci, HLM, Beijing 100190, Peoples R China
[6] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger equation; standing wave; normalized solution; GROUND-STATE SOLUTIONS; SCHRODINGER-EQUATIONS; EXISTENCE; MULTIPLICITY;
D O I
10.4208/ata.OA-2022-0012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of standing waves of fractional Schrodinger equations with a potential term and a general nonlinear term: iut-(-triangle)su-V(x)u+f(u) =0,(t,x)is an element of R+xR(N) where s is an element of(0, 1),N>2sis an integer and V(x)<= 0 is radial. More precisely, we investigate the minimizing problem withL2-constraint E(alpha) =inf{12 integral R-N|(-triangle)s2u|(2)+V(x)|u|(2)-2F(|u|)divided by divided by divided by divided by u is an element of H-s(R-N),& Vert;u & Vert;2L2(R-N)=alpha} Under general assumptions on the nonlinearity termf(u)and the potential termV(x),we prove that there exists a constant alpha 0 >= 0 such that E(alpha)can be achieved for all alpha>alpha 0, and there is no global minimizer with respect toE(alpha)for all 0<alpha<alpha 0.Moreover, we propose some criteria determining alpha 0=0 or alpha 0>0
引用
收藏
页数:21
相关论文
共 50 条