Optimal Transport Posterior Alignment for Cross-lingual Semantic Parsing

被引:0
|
作者
Sherborne, Tom [1 ]
Hosking, Tom [1 ]
Lapata, Mirella [1 ]
机构
[1] Univ Edinburgh, Sch Informat, Inst Language Cognit & Computat, 10 Crichton St, Edinburgh EH8 9AB, Scotland
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1162/tacl_a_00611
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-lingual semantic parsing transfers parsing capability from a high-resource language (e.g., English) to low-resource languages with scarce training data. Previous work has primarily considered silver-standard data augmentation or zero-shot methods; exploiting few-shot gold data is comparatively unexplored. We propose a new approach to cross-lingual semantic parsing by explicitly minimizing cross-lingual divergence between probabilistic latent variables using Optimal Transport. We demonstrate how this direct guidance improves parsing from natural languages using fewer examples and less training. We evaluate our method on two datasets, MTOP and MultiATIS++SQL, establishing state-of-the-art results under a few-shot cross-lingual regime. Ablation studies further reveal that our method improves performance even without parallel input translations. In addition, we show that our model better captures cross-lingual structure in the latent space to improve semantic representation similarity.1
引用
收藏
页码:1432 / 1450
页数:19
相关论文
共 50 条
  • [1] Cross-lingual Decompositional Semantic Parsing
    Zhang, Sheng
    XutaiMa
    Rudinger, Rachel
    Duh, Kevin
    Van Durme, Benjamin
    [J]. 2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 1664 - 1675
  • [2] Improving Cross-lingual Entity Alignment via Optimal Transport
    Pei, Shichao
    Yu, Lu
    Zhang, Xiangliang
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 3231 - 3237
  • [3] Zero-Shot Cross-lingual Semantic Parsing
    Sherborne, Tom
    Lapata, Mirella
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 4134 - 4153
  • [4] Learning Cross-lingual Distributed Logical Representations for Semantic Parsing
    Zou, Yanyan
    Lu, Wei
    [J]. PROCEEDINGS OF THE 56TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, 2018, : 673 - 679
  • [5] Meta-Learning a Cross-lingual Manifold for Semantic Parsing
    Sherborne, Tom
    Lapata, Mirella
    [J]. TRANSACTIONS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2023, 11 : 49 - 67
  • [6] Alignment-free Cross-lingual Semantic Role Labeling
    Cai, Rui
    Lapata, Mirella
    [J]. PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 3883 - 3894
  • [7] Constituency Parsing by Cross-Lingual Delexicalization
    Kaing, Hour
    Ding, Chenchen
    Utiyama, Masao
    Sumita, Eiichiro
    Sudoh, Katsuhito
    Nakamura, Satoshi
    [J]. IEEE ACCESS, 2021, 9 : 141571 - 141578
  • [8] Cross-lingual RST Discourse Parsing
    Brand, Chloe
    Coavoux, Maximin
    Sogaard, Anders
    [J]. 15TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2017), VOL 1: LONG PAPERS, 2017, : 292 - 304
  • [9] XSEMPLR: Cross-Lingual Semantic Parsing in Multiple Natural Languages and Meaning Representations
    Zhang, Yusen
    Wang, Jun
    Wang, Zhiguo
    Zhang, Rui
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 15918 - 15947
  • [10] Multilingual Semantic Sourcing using Product Images for Cross-lingual Alignment
    Mangrulkar, Sourab
    Ankith, M. S.
    Sembium, Vivek
    [J]. COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 41 - 51