The t-tone chromatic number of classes of sparse graphs

被引:0
|
作者
Cranston, Daniel W. [1 ]
Lafayette, Hudson [2 ]
机构
[1] Virginia Commonwealth Univ, Dept Comp Sci, Richmond, VA 23284 USA
[2] Virginia Commonwealth Univ, Dept Math & Appl Math, Richmond, VA USA
来源
关键词
COLORINGS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G and t, k E Z(+) a t-tone k-coloring of G is a function f : V (G) ? ?([k]) t) such that |f(v) n f(w)| < d(v, w) for all distinct v, w E t V (G). The t-tone chromatic number of G, denoted T-t(G), is the minimum k such that G is t -tone k -colorable. For small values of t, we prove sharp or nearly sharp upper bounds on the t -tone chromatic number of various classes of sparse graphs. In particular, we determine T-2(G) exactly when mad(G) < 12/5 and bound T-2(G), up to a small additive constant, when G is outerplanar. We also determine T-t(Cn) exactly when t ? {3, 4, 5}.
引用
收藏
页码:458 / 476
页数:19
相关论文
共 50 条
  • [1] The t-Tone Chromatic Number of Random Graphs
    Deepak Bal
    Patrick Bennett
    Andrzej Dudek
    Alan Frieze
    Graphs and Combinatorics, 2014, 30 : 1073 - 1086
  • [2] The t-Tone Chromatic Number of Random Graphs
    Bal, Deepak
    Bennett, Patrick
    Dudek, Andrzej
    Frieze, Alan
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1073 - 1086
  • [3] t-Tone Colorings of Graphs
    Bickle, Allan
    Phillips, Ben
    UTILITAS MATHEMATICA, 2018, 106 : 85 - 102
  • [4] A Lower Bound for the t-Tone Chromatic Number of a Graph in Terms of Wiener Index
    Pan, Jun-Jie
    Tsai, Cheng-Hsiu
    GRAPHS AND COMBINATORICS, 2018, 34 (01) : 159 - 162
  • [5] A Lower Bound for the t-Tone Chromatic Number of a Graph in Terms of Wiener Index
    Jun-Jie Pan
    Cheng-Hsiu Tsai
    Graphs and Combinatorics, 2018, 34 : 159 - 162
  • [6] New results in t-tone coloring of graphs
    Cranston, Daniel W.
    Kim, Jaehoon
    Kinnersley, William B.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (02):
  • [7] Majestic t-Tone Colorings of Bipartite Graphs with Large Cycles
    Hart, Ian
    Zhang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 110 : 73 - 87
  • [8] On the signed chromatic number of some classes of graphs
    Bensmail, Julien
    Das, Sandip
    Nandi, Soumen
    Pierron, Theo
    Sen, Sagnik
    Sopena, Eric
    DISCRETE MATHEMATICS, 2022, 345 (02)
  • [9] ON THE GAME CHROMATIC NUMBER OF SOME CLASSES OF GRAPHS
    FAIGLE, U
    KERN, U
    KIERSTEAD, H
    TROTTER, WT
    ARS COMBINATORIA, 1993, 35 : 143 - 150
  • [10] Injective edge chromatic number of sparse graphs
    Zhu, Junlei
    Zhu, Hongguo
    Bu, Yuehua
    Applied Mathematics and Computation, 2024, 473