Vietnamese Sentiment Analysis: An Overview and Comparative Study of Fine-tuning Pretrained Language Models

被引:4
|
作者
Dang Van Thin [1 ,2 ]
Duong Ngoc Hao [1 ,2 ]
Ngan Luu-Thuy Nguyen [1 ,2 ]
机构
[1] Univ Informat Technol, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
关键词
Vietnamese Sentiment Analysis; fine-tuning language models; monolingual BERT model; multilingual BERT model; T5; architecture;
D O I
10.1145/3589131
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sentiment Analysis (SA) is one of the most active research areas in the Natural Language Processing (NLP) field due to its potential for business and society. With the development of language representation models, numerous methods have shown promising efficiency in fine-tuning pre-trained language models in NLP downstream tasks. For Vietnamese, many available pre-trained language models were also released, including the monolingual and multilingual language models. Unfortunately, all of these models were trained on different architectures, pre-trained data, and pre-processing steps; consequently, fine-tuning these models can be expected to yield different effectiveness. In addition, there is no study focusing on evaluating the performance of these models on the same datasets for the SA task up to now. This article presents a fine-tuning approach to investigate the performance of different pre-trained language models for the Vietnamese SA task. The experimental results show the superior performance of the monolingual PhoBERT model and ViT5 model in comparison with previous studies and provide new state-of-the-art performances on five benchmark Vietnamese SA datasets. To the best of our knowledge, our study is the first attempt to investigate the performance of fine-tuning Transformer-based models on five datasets with different domains and sizes for the Vietnamese SA task.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] CONVFIT: Conversational Fine-Tuning of Pretrained Language Models
    Vulic, Ivan
    Su, Pei-Hao
    Coope, Sam
    Gerz, Daniela
    Budzianowski, Pawel
    Casanueva, Inigo
    Mrksic, Nikola
    Wen, Tsung-Hsien
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 1151 - 1168
  • [2] Recall and Learn: Fine-tuning Deep Pretrained Language Models with Less Forgetting
    Chen, Sanyuan
    Hou, Yutai
    Cui, Yiming
    Che, Wanxiang
    Liu, Ting
    Yu, Xiangzhan
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 7870 - 7881
  • [3] Fine-Tuning Pretrained Language Models to Enhance Dialogue Summarization in Customer Service Centers
    Yun, Jiseon
    Sohn, Jae Eui
    Kyeong, Sunghyon
    PROCEEDINGS OF THE 4TH ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, ICAIF 2023, 2023, : 365 - 373
  • [4] Equi-Tuning: Group Equivariant Fine-Tuning of Pretrained Models
    Basu, Sourya
    Sattigeri, Prasanna
    Ramamurthy, Karthikeyan Natesan
    Chenthamarakshan, Vijil
    Varshney, Kush R.
    Varshney, Lav R.
    Das, Payel
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 6, 2023, : 6788 - 6796
  • [5] Prompting or Fine-tuning? A Comparative Study of Large Language Models for Taxonomy Construction
    Chen, Boqi
    Yi, Fandi
    Varro, Daniel
    2023 ACM/IEEE INTERNATIONAL CONFERENCE ON MODEL DRIVEN ENGINEERING LANGUAGES AND SYSTEMS COMPANION, MODELS-C, 2023, : 588 - 596
  • [6] An Empirical Evaluation of the Zero-Shot, Few-Shot, and Traditional Fine-Tuning Based Pretrained Language Models for Sentiment Analysis in Software Engineering
    Shafikuzzaman, Md
    Islam, Md Rakibul
    Rolli, Alex C.
    Akhter, Sharmin
    Seliya, Naeem
    IEEE ACCESS, 2024, 12 : 109714 - 109734
  • [7] Lexicon-based fine-tuning of multilingual language models for low-resource language sentiment analysis
    Dhananjaya, Vinura
    Ranathunga, Surangika
    Jayasena, Sanath
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024,
  • [8] Leveraging Pretrained Language Models for Enhanced Entity Matching: A Comprehensive Study of Fine-Tuning and Prompt Learning Paradigms
    Wang, Yu
    Zhou, Luyao
    Wang, Yuan
    Peng, Zhenwan
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024
  • [9] Two-Stage Fine-Tuning for Improved Bias and Variance for Large Pretrained Language Models
    Wang, Lijing
    Li, Yingya
    Miller, Timothy
    Bethard, Steven
    Savova, Guergana
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 15746 - 15761
  • [10] Improving Pretrained Language Model Fine-Tuning With Noise Stability Regularization
    Hua, Hang
    Li, Xingjian
    Dou, Dejing
    Xu, Cheng-Zhong
    Luo, Jiebo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, : 1 - 15