Development of porous scaffolds based on the in situ synthesis of biphasic calcium phosphate in a gelatin-polyvinyl alcohol matrix for bone tissue engineering

被引:22
|
作者
Hassouna, Aya [1 ]
Elgharbawy, Hani [1 ]
Morsy, Reda [1 ]
机构
[1] Tanta Univ, Fac Sci, Phys Dept, Biophys Lab, Tanta 31527, Egypt
关键词
Porous scaffold; Biphasic calcium phosphate; Gelatin; PVA; Tissue engineering; Lyophilization; FABRICATION; MECHANISM; HYDROGELS; OXIDE;
D O I
10.1016/j.molstruc.2023.134951
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
3D porous scaffolds are the preferred scaffold for tissue engineering applications that require good biocompatibility and mechanical properties. However, those scaffolds, based on gelatin and calcium phosphate, have been shown to be elusive due to the difficulty of reconciling excellent biological properties, long-term degradation, and desirable mechanical properties of scaffolds. Here, we designed porous scaffolds based on biphasic calcium phosphate (BCP: a mixture of hydroxyapatite (HAp) and beta-tricalcium phosphate (TCP)) and polymer (gelatin and polyvinyl alcohol (PVA)) composite hydrogel using a lyophilization technique. BCP was prepared in situ in gelatin and PVA at polymer/BCP ratios equal to 0. 2, 0. 4, and 0. 6. The composition and structure of the scaffolds were investigated using a variety of techniques: XRD, FTIR, TGA-DTA, and SEM. The mechanical properties and in vitro swelling-degradation studies of the scaffolds were investigated. The results showed the formation of well-dispersed BCP in scaffolds with different HAp/TCP ratios. Scaffolds with lower content of BCP showed higher porosity and somewhat lower mechanical properties, lower diffusion of ceramic particles into fine pores and reduced pore size shrinkage compared to those with higher content of BCP. The scaffolds had good mechanical compressive strength in the range of 40-70 kPa, porosity of 10-90% and pore size of 10-310 mu m. They exhibited high permeability, high swelling capacity of up to 800%, long-term swelling and degradation behavior of up to 42 days. These porous scaffolds could be potential biomaterials for damaged bones in orthopedic tissue engineering. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Investigation of biphasic calcium phosphate/gelatin nanocomposite scaffolds as a bone tissue engineering
    Bakhtiari, Leila
    Rezaie, Hamid Reza
    Hosseinalipour, Seyed Mohamad
    Shokrgozar, Mohamad Ali
    CERAMICS INTERNATIONAL, 2010, 36 (08) : 2421 - 2426
  • [2] Preparation of Porous Biphasic Calcium Phosphate-Gelatin Nanocomposite for Bone Tissue Engineering
    Bakhtiari, L.
    Rezai, H. R.
    Hosseinalipour, S. M.
    Shokrgozar, M. A.
    JOURNAL OF NANO RESEARCH, 2010, 11 : 67 - 72
  • [3] Gelatin-Polyvinyl Alcohol Film for Tissue Engineering: A Concise Review
    Zulkiflee, Izzat
    Fauzi, Mh Busra
    BIOMEDICINES, 2021, 9 (08)
  • [4] Carbon nanotube reinforced polyvinyl alcohol/biphasic calcium phosphate scaffold for bone tissue engineering
    Lan, Weiwei
    Zhang, Xiumei
    Xu, Mengjie
    Zhao, Liqin
    Huang, Di
    Wei, Xiaochun
    Chen, Weiyi
    RSC ADVANCES, 2019, 9 (67) : 38998 - 39010
  • [5] Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering
    Ramay, HRR
    Zhang, M
    BIOMATERIALS, 2004, 25 (21) : 5171 - 5180
  • [6] Composite Nano-fiber Mats Consisting of Biphasic Calcium Phosphate Loaded Polyvinyl Alcohol-Gelatin for Bone Tissue Engineering
    Linh Thuy Ba Nguyen
    Thi-Hiep Nguyen
    Chan-Khon Huynh
    Lee, Byong-Taek
    Ye, Hua
    7TH INTERNATIONAL CONFERENCE ON THE DEVELOPMENT OF BIOMEDICAL ENGINEERING IN VIETNAM (BME7): TRANSLATIONAL HEALTH SCIENCE AND TECHNOLOGY FOR DEVELOPING COUNTRIES, 2020, 69 : 301 - 305
  • [7] Development of chitosan/gelatin hydrogels incorporation of biphasic calcium phosphate nanoparticles for bone tissue engineering
    Nie, Lei
    Wu, Qiaoyun
    Long, Haiyue
    Hu, Kehui
    Li, Pei
    Wang, Can
    Sun, Meng
    Dong, Jing
    Wei, Xiaoyan
    Suo, Jinping
    Hua, Dangling
    Liu, Shiliang
    Yuan, Hongyu
    Yang, Shoufeng
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2019, 30 (17) : 1636 - 1657
  • [8] The addition of biphasic calcium phosphate to porous chitosan scaffolds enhances bone tissue development in vitro
    Sendemir-Urkmez, Aylin
    Jamison, Russell D.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2007, 81A (03) : 624 - 633
  • [9] Evaluation of chitosan/biphasic calcium phosphate scaffolds for maxillofacial bone tissue engineering
    Urkmez, Aylin Sendemir
    Clark, Sherrie G.
    Wheeler, Matthew B.
    Goldwasser, Michael S.
    Jamison, Russell D.
    MACROMOLECULAR SYMPOSIA, 2008, 269 : 100 - 105
  • [10] Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticlesicollagen porous composite scaffolds for bone tissue engineering
    Chen, Ying
    Kawazoe, Naoki
    Chen, Guoping
    ACTA BIOMATERIALIA, 2018, 67 : 341 - 353