Status and prospects of the PandaX-III experiment

被引:1
|
作者
Zhang, W. [1 ,2 ]
Lin, H. [1 ,2 ]
Liu, Y. [1 ,2 ]
Han, K. [1 ,2 ]
Ni, K. [1 ,2 ]
Wang, S. [1 ,2 ,3 ]
Zhai, W.
机构
[1] Shanghai Jiao Tong Univ, Shanghai Key Lab Particle Phys & Cosmol, MOE Key Lab Particle Phys Astrophys & Cosmol, INPAC, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai Key Lab Particle Phys & Cosmol, MOE Key Lab Particle Phys Astrophys & Cosmol, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, SPEIT SJTU Paris Elite Inst Technol, Shanghai 200240, Peoples R China
关键词
Micropattern gaseous detectors (MSGC; GEM; THGEM; RETHGEM; MHSP; MICROPIC; MICROMEGAS; InGrid; etc); Time projection chambers;
D O I
10.1088/1748-0221/18/12/C12001
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The PandaX-III experiment searches for neutrinoless double beta decay of 136Xe with a high-pressure xenon gaseous time projection chamber (TPC). Thermal-bonding Micromegas modules are used for charge collection. Benefitting from the excellent energy resolution and imaging capability, the background rate can be significantly suppressed through the topological information of events. The technology is successfully demonstrated by a prototype detector. The final detector has been constructed. In this paper, we will report the status of the PandaX-III experiment, including the construction and commissioning of the final detector, and the Micromegas-based TPC performance test in the prototype detector.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Slow Control System for PandaX-III experiment
    Yan, X.
    Chen, X.
    Chen, Y.
    Dai, B.
    Lin, H.
    Li, T.
    Han, K.
    Ni, K.
    Wang, F.
    Wang, S.
    Zheng, Q.
    Zeng, X.
    JOURNAL OF INSTRUMENTATION, 2021, 16 (05)
  • [2] Optimization of convolutional neural networks for background suppression in the PandaX-III experiment
    Xia, Shangning
    Huang, Suizhi
    Xu, Kexin
    Li, Tao
    Chen, Xun
    Han, Ke
    Wang, Shaobo
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2023, 50 (12)
  • [3] Reconstruction of the event vertex in the PandaX-III experiment with convolution neural network
    Li, Tao
    Chen, Yu
    Wang, Shaobo
    Han, Ke
    Lin, Heng
    Ni, Kaixiang
    Wang, Wei
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (05)
  • [4] Latest progress of PandaX-III neutrinoless double beta decay experiment
    Lin, Heng
    10TH SYMPOSIUM ON LARGE TPCS FOR LOW ENERGY RARE EVENT DETECTION, TPC 2021, 2023, 2502
  • [5] The TPC detector of PandaX-III Neutrinoless Double Beta Decay experiment
    Wang, S.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (03):
  • [6] Reconstruction of the event vertex in the PandaX-III experiment with convolution neural network
    Tao Li
    Yu Chen
    Shaobo Wang
    Ke Han
    Heng Lin
    Kaixiang Ni
    Wei Wang
    Journal of High Energy Physics, 2023
  • [7] Reconstruction of missing data of the PandaX-III experiment TPC using neural network
    Lobasenko, A.
    JOURNAL OF INSTRUMENTATION, 2023, 18 (08):
  • [8] Topological background discrimination in the PandaX-III neutrinoless double beta decay experiment
    Galan, J.
    Chen, X.
    Du, H.
    Fu, C.
    Giboni, K.
    Giuliani, F.
    Han, K.
    Jiang, B.
    Ji, X.
    Lin, H.
    Lin, Y.
    Liu, J.
    Ni, K.
    Ren, X.
    Wang, S.
    Wu, S.
    Xie, C.
    Yang, Y.
    Zhang, T.
    Zhao, L.
    Aune, S.
    Bedfer, Y.
    Berthoumieux, E.
    Calvet, D.
    D'Hose, N.
    Ferrer-Ribas, E.
    Kunne, F.
    Manier, B.
    Neyret, D.
    Papaevangelou, T.
    Chen, L.
    Hu, S.
    Li, P.
    Li, X.
    Zhang, H.
    Zhao, M.
    Zhou, J.
    Mao, Y.
    Qiao, H.
    Wang, S.
    Yuan, Y.
    Wang, M.
    Chen, Y.
    Khan, A. N.
    Tang, J.
    Wang, W.
    Chen, H.
    Feng, C.
    Liu, J.
    Liu, S.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2020, 47 (04)
  • [9] Microbulk MicrOMEGAs for the search of 0νββ of 136Xe in the PandaX-III experiment
    Galan, J.
    JOURNAL OF INSTRUMENTATION, 2016, 11
  • [10] Signal-background discrimination with convolutional neural networks in the PandaX-III experiment using MC simulation
    Hao Qiao
    ChunYu Lu
    Xun Chen
    Ke Han
    XiangDong Ji
    SiGuang Wang
    Science China Physics, Mechanics & Astronomy, 2018, 61