Asymptotic Nodal Length and Log-Integrability of Toral Eigenfunctions

被引:0
|
作者
Sartori, Andrea [1 ]
机构
[1] Tel Aviv Univ, Dept Math, Tel Aviv, Israel
基金
英国工程与自然科学研究理事会;
关键词
LAPLACE EIGENFUNCTIONS; SETS; NUMBER;
D O I
10.1007/s00220-023-04752-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the nodal set of Laplace eigenfunctions on the flat 2d torus T-2. We prove an asymptotic law for the nodal length of such eigenfunctions, under some growth assumptions on their Fourier coefficients. Moreover, we show that their nodal set is asymptotically equidistributed on T-2. The proofs are based on Bourgain's de randomisation technique and the main new ingredient, which might be of independent interest, is the integrability of arbitrarily large powers of the doubling index of Laplace eigenfunctions on T-2, based on the work of Nazarov (Algebra Anal 5:3-66, 1993; Summability of large powers of logarithm of classic lacunary series and its simplest consequences https://users.math.msu.edu/users/fedja/prepr.html, 1995).
引用
收藏
页码:1513 / 1549
页数:37
相关论文
共 13 条
  • [1] Asymptotic Nodal Length and Log-Integrability of Toral Eigenfunctions
    Andrea Sartori
    Communications in Mathematical Physics, 2023, 402 : 1513 - 1549
  • [2] On the nodal sets of toral eigenfunctions
    Bourgain, Jean
    Rudnick, Zeev
    INVENTIONES MATHEMATICAE, 2011, 185 (01) : 199 - 237
  • [3] On the nodal sets of toral eigenfunctions
    Jean Bourgain
    Zeév Rudnick
    Inventiones mathematicae, 2011, 185 : 199 - 237
  • [4] On the Number of Nodal Domains of Toral Eigenfunctions
    Buckley, Jeremiah
    Wigman, Igor
    ANNALES HENRI POINCARE, 2016, 17 (11): : 3027 - 3062
  • [5] On the Number of Nodal Domains of Toral Eigenfunctions
    Jeremiah Buckley
    Igor Wigman
    Annales Henri Poincaré, 2016, 17 : 3027 - 3062
  • [6] RESTRICTION OF TORAL EIGENFUNCTIONS TO HYPERSURFACES AND NODAL SETS
    Bourgain, Jean
    Rudnick, Zeev
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (04) : 878 - 937
  • [7] Restriction of toral eigenfunctions to hypersurfaces and nodal sets
    Jean Bourgain
    Zeév Rudnick
    Geometric and Functional Analysis, 2012, 22 : 878 - 937
  • [8] Planck-scale number of nodal domains for toral eigenfunctions
    Sartori, Andrea
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
  • [9] LOG-INTEGRABILITY OF RADEMACHER FOURIER SERIES, WITH APPLICATIONS TO RANDOM ANALYTIC FUNCTIONS
    Nazarov, F.
    Nishry, A.
    Sodin, M.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (03) : 467 - 494
  • [10] Lower Bounds for the Nodal Length of Eigenfunctions of the Laplacian
    Alessandro Savo
    Annals of Global Analysis and Geometry, 2001, 19 : 133 - 151