On localization of the Menger property

被引:1
|
作者
Alam, Nur [1 ]
Chandray, Debraj [1 ]
机构
[1] Univ Gour Banga, Dept Math, Malda 732103, W Bengal, India
关键词
Primary; Secondary; Menger property; locally Menger; MG-space; decomposition; remainder; nearly perfect mapping; meshing; WEAKER FORMS; REMAINDERS; COMBINATORICS; PRODUCTS; COVERS; SPACES;
D O I
10.2989/16073606.2022.2054745
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce and study the local version of the Menger property, namely locally Menger property (or, locally Menger space). We explore some preservation like properties in this space. We also discuss certain situations where this local property behaves somewhat differently from the classical Menger property. Some observations about the character of a point, network weight and weight in this space are also investigated carefully. We also introduce the notion of Menger generated space (in short, MG-space) and make certain investigations in these spaces. Several topological observations on the decomposition and the remain- der of locally Menger spaces are also discussed.
引用
收藏
页码:1069 / 1092
页数:24
相关论文
共 50 条
  • [1] WEAKER FORMS OF THE MENGER PROPERTY
    Pansera, Bruno Antonio
    [J]. QUAESTIONES MATHEMATICAE, 2012, 35 (02) : 161 - 169
  • [2] STAR VERSIONS OF THE MENGER PROPERTY ON
    Casas-de La Rosa, Javier
    Martinez-Ruiz, Ivan
    Ramirez-Paramo, Alejandro
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2021, 47 (04): : 945 - 956
  • [3] Star versions of the Menger property
    Sakai, Masami
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2014, 176 : 22 - 34
  • [4] Almost Menger Property in Bitopological Spaces
    Ozcag, S.
    Eysen, A. E.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2016, 68 (06) : 950 - 958
  • [5] The Menger property on Cp(X, 2)
    Bernal-Santos, D.
    Tamariz-Mascarua, A.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2015, 183 : 110 - 126
  • [6] Almost Menger Property in Bitopological Spaces
    S. Özçağ
    A. E. Eysen
    [J]. Ukrainian Mathematical Journal, 2016, 68 : 950 - 958
  • [7] The Menger property and l-equivalence
    Sakai, Masami
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2020, 281
  • [8] THE MENGER PROPERTY FOR INFINITE ORDERED SETS
    AHARONI, R
    BROCHET, JM
    POUZET, M
    [J]. ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 1988, 5 (03): : 305 - 315
  • [9] Star versions of Menger basis covering property and Menger measure zero spaces
    Bhardwaj, Manoj
    [J]. PUBLICATIONES MATHEMATICAE DEBRECEN, 2021, 99 (3-4): : 299 - 316
  • [10] Weaker forms of the Menger property in bitopological spaces
    Eysen, A. Emre
    Ozcag, Selma
    [J]. QUAESTIONES MATHEMATICAE, 2018, 41 (07) : 877 - 888