Contact-line bending energy controls phospholipid vesicle adhesion

被引:0
|
作者
Hill, Reghan J. [1 ]
Al-Amodi, Adel [1 ]
机构
[1] McGill Univ, Dept Chem Engn, Montreal, PQ H3A 0C5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
phospholipid-bilayer membranes; contact-line bending energy; vesicle-hydrogel adhesion; FORCES;
D O I
10.1098/rspa.2023.0545
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phospholipid bilayer bending energy is often discarded in the analysis of vesicle adhesion on the basis of a dimensionless parameter w=-Delta UR02/kappa b >> 1 (interaction energy Delta U, spherical radius R0, bending rigidity kappa b), considered a regime of strong adhesion. In this study, we propose a model by which bending energy in a singular proximity of the contact line balances the adhesion energy. This is developed for a regime in which the membrane correlation length xi is small compared with the vesicle radius R0, so a spherical cap with circular footprint presents an effective contact angle theta. Experiments are conducted in which the adhesion of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) vesicles to hyaluronic acid hydrogel substrates is controlled by tuning the van der Waals attraction with systematic change in the hydrogel concentration. Theoretical interpretation of the data furnishes a dimensionless model parameter alpha approximate to 2-10 for contact angles theta approximate to 20-80 circle, beyond which vesicles collapse into discs. We show that the van der Waals interaction energy varies in the range -Delta U approximate to 0.14-0.68 mu J m-2 in response to varying the hydrogel concentration in a range cha approximate to 2-10%. The analysis provides a foundation for exploring vesicle-hydrogel interactions with electro-steric influences; these are poorly understood but pertinent in a wide variety of biological and technological applications.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Energy dissipation and the contact-line region of a spreading bridge
    van Lengerich, H. B.
    Steen, P. H.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 703 : 111 - 141
  • [2] DISSIPATION AND CONTACT-LINE MOTION
    HALEY, PJ
    MIKSIS, MJ
    [J]. PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (03): : 487 - 489
  • [3] Superhydrophobicity and Contact-Line Issues
    Lichao Gao
    Alexander Y. Fadeev
    Thomas J. McCarthy
    [J]. MRS Bulletin, 2008, 33 : 747 - 751
  • [4] Superhydrophobicity and contact-line issues
    Gao, Lichao
    Fadeev, Alexander Y.
    McCarthy, Thomas J.
    [J]. MRS BULLETIN, 2008, 33 (08) : 747 - 751
  • [5] Is contact-line mobility a material parameter?
    Jonathan M. Ludwicki
    Vanessa R. Kern
    Joshua McCraney
    Joshua B. Bostwick
    Susan Daniel
    Paul H. Steen
    [J]. npj Microgravity, 8
  • [6] Contact-line mechanics for pattern control
    Miquelard-Garnier, Guillaume
    Croll, Andrew B.
    Davis, Chelsea S.
    Crosby, Alfred J.
    [J]. SOFT MATTER, 2010, 6 (22) : 5789 - 5794
  • [7] Contact-line pinning controls how quickly colloidal particles equilibrate with liquid interfaces
    Wang, Anna
    McGorty, Ryan
    Kaz, David M.
    Manoharan, Vinothan N.
    [J]. SOFT MATTER, 2016, 12 (43) : 8958 - 8967
  • [8] Contact-line fluctuations and dynamic wetting
    Fernandez-Toledano, J-C.
    Blake, T. D.
    De Coninck, J.
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 540 : 322 - 329
  • [9] Moving contact-line mobility measured
    Xia, Yi
    Steen, Paul H.
    [J]. JOURNAL OF FLUID MECHANICS, 2018, 841 : 767 - 783
  • [10] On contact-line dynamics with mass transfer
    Oliver, J. M.
    Whiteley, J. P.
    Saxton, M. A.
    Vella, D.
    Zubkov, V. S.
    King, J. R.
    [J]. EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2015, 26 : 671 - 719