Domain Wall Evolution in Hf0.5Zr0.5O2 Ferroelectrics under Field-Cycling Behavior

被引:15
|
作者
Zhang, Sirui [1 ]
Zhang, Qinghua [2 ]
Meng, Fanqi [2 ]
Lin, Ting [2 ]
Zeng, Binjian [3 ]
Gu, Lin [4 ]
Liao, Min [1 ]
Zhou, Yichun [1 ]
机构
[1] Xidian Univ, Sch Adv Mat & Nanotechnol, Xian 710071, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Peoples R China
[4] Tsinghua Univ, Sch Mat Sci & Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
ENHANCED FERROELECTRICITY; FILMS;
D O I
10.34133/research.0093
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
HfO2-based ferroelectrics have evoked considerable interest owing to the complementary metal-oxide semiconductor compatibility and robust ferroelectricity down to a few unit cells. However, the unique wake-up effect of HfO2-based ferroelectric films severely restricts the improvement of their performance. In particular, the domain structure is an important characteristic of ferroelectric materials, which still has not been well understood in HfO2-based ferroelectrics. In this work, a Hf0.5Zr0.5O2 ferroelectric thin film is grown on a typical Si substrate buffered with TiN electrode. The 90 degrees domains of the Pca21 ferroelectric phase with head-to-tail and tail-to-tail structures can be observed by Cs-corrected scanning transmission electron microscope under their pristine condition. After waking up, the 180 degrees domain is displayed in the ferroelectric phase.The remarkable differences in domain walls for 90 degrees and 180 degrees domains are characterized by qualitatively mapping the polarization distributions at the atomic scale. The domain wall changes from the [101] of the Hf0.5Zr0.5O2 film to the [001] of the Hf0.5Zr0.5O2 film. This result provides fundamental information for understanding the domain structure of HfO2-based ferroelectrics.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2
    Fengler, F. P. G.
    Hoffmann, M.
    Slesazeck, S.
    Mikolajick, T.
    Schroeder, U.
    JOURNAL OF APPLIED PHYSICS, 2018, 123 (20)
  • [3] Thermal evolution of ferroelectric behavior in epitaxial Hf0.5Zr0.5O2
    Adkins, J. W.
    Fina, I.
    Sanchez, F.
    Bakaul, S. R.
    Abiade, J. T.
    APPLIED PHYSICS LETTERS, 2020, 117 (14)
  • [4] The atomic and electronic structure of Hf0.5Zr0.5O2 and Hf0.5Zr0.5O2:La films
    Perevalov, Timofey, V
    Prosvirin, Igor P.
    Suprun, Evgenii A.
    Mehmood, Furqan
    Mikolajick, Thomas
    Schroeder, Uwe
    Gritsenko, Vladimir A.
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2021, 6 (04): : 595 - 600
  • [5] On the Imprint Mechanism of Thin-Film Hf0.5Zr0.5O2 Ferroelectrics
    Kim, Taekyong
    del Alamo, Jesus A.
    Antoniadis, Dimitri
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (11) : 6620 - 6626
  • [6] Revealing the Role of Spacer Layer in Domain Dynamics of Hf0.5Zr0.5O2 Thin Films for Ferroelectrics
    Peng, Ren-Ci
    Wen, Shubin
    Cheng, Xiaoxing
    Chen, Long-Qing
    Liao, Min
    Zhou, Yichun
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)
  • [7] Ferroelectric switching behavior of nanoscale Hf0.5Zr0.5O2 grains
    Chen, Qiang
    Zhang, Yuke
    Liu, Wenyan
    Jiang, Jie
    Yang, Qiong
    Jiang, Limei
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2021, 212
  • [8] A Kinetic Pathway to Orthorhombic Hf0.5Zr0.5O2
    Chen, Guan-Hua
    Chen, Yu-Rui
    Zhao, Zefu
    Lee, Jia-Yang
    Chen, Yun-Wen
    Xing, Yifan
    Dobhal, Rachit
    Liu, C. W.
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2023, 11 : 752 - 758
  • [9] Charge transport in amorphous Hf0.5Zr0.5O2
    Islamov, D. R.
    Perevalov, T. V.
    Gritsenko, V. A.
    Cheng, C. H.
    Chin, A.
    APPLIED PHYSICS LETTERS, 2015, 106 (10)
  • [10] Thermal evolution of ferroelectric behavior in epitaxial Hf0.5Zr0.5O2 (vol 117, 142902, 2020)
    Adkins, J. W.
    Fina, I.
    Sanchez, F.
    Bakaul, S. R.
    Abiade, J. T.
    APPLIED PHYSICS LETTERS, 2022, 120 (12)