Collisionless shock acceleration of protons in a plasma slab produced in a gas jet by the collision of two laser-driven hydrodynamic shockwaves

被引:3
|
作者
Marques, J. -R. [1 ]
Lancia, L. [1 ]
Loiseau, P. [2 ,3 ]
Forestier-Colleoni, P. [1 ,9 ]
Tarisien, M. [4 ]
Atukpor, E. [4 ]
Bagnoud, V. [5 ,6 ]
Brabetz, C. [5 ]
Consoli, F. [7 ]
Domange, J. [4 ]
Hannachi, F. [4 ]
Nicolai, P. [8 ]
Salvadori, M. [7 ]
Zielbauer, B. [5 ]
机构
[1] Sorbonne Univ, Inst Polytech Paris, Ecole Polytech, LULI,CNRS,CEA, F-91128 Palaiseau, France
[2] CEA, DAM, DIF, F-91297 Arpajon, France
[3] Univ Paris Saclay, CEA, LMCE, F-91680 Bruyeres Le Chatel, France
[4] Univ Bordeaux, CENBG, CNRS, IN2P3, F-33175 Gradignan, France
[5] GSI Helmholtzzentrum Schwerionen Forsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany
[6] Univ Darmstadt, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[7] CR Frascati, ENEA Fus & Technol Nucl Safety Dept, Via Enr Fermi 45, Rome, Italy
[8] Univ Bordeaux, CELIA, CNRS, CEA, F-33405 Talence, France
[9] Univ Paris Saclay, CEA, LIDYL, F-91191 Gif Sur Yvette, France
关键词
PARTICLE-ACCELERATION; FAST IGNITION; GENERATION; BEAMS;
D O I
10.1063/5.0178253
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet [Marques et al., Phys. Plasmas 28, 023103 (2021)]. In a continuation of this numerical work, we study experimentally the influence of the tailoring on proton acceleration driven by a high-intensity picosecond laser in three cases: without tailoring, by tailoring only the entrance side of the picosecond laser, and by tailoring both sides of the gas jet. Without tailoring, the acceleration is transverse to the laser axis, with a low-energy exponential spectrum, produced by Coulomb explosion. When the front side of the gas jet is tailored, a forward acceleration appears, which is significantly enhanced when both the front and back sides of the plasma are tailored. This forward acceleration produces higher-energy protons, with a peaked spectrum, and is in good agreement with the mechanism of collisionless shock acceleration (CSA). The spatiotemporal evolution of the plasma profile is characterized by optical shadowgraphy of a probe beam. The refraction and absorption of this beam are simulated by post-processing 3D hydrodynamic simulations of the plasma tailoring. Comparison with the experimental results allows estimation of the thickness and near-critical density of the plasma slab produced by tailoring both sides of the gas jet. These parameters are in good agreement with those required for CSA.<br />(c) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license(http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:14
相关论文
共 22 条
  • [1] Collisionless shock acceleration of protons in a plasma slab produced in a gas jet by the collision of two laser-driven hydrodynamic shockwaves
    JRMarqus
    LLancia
    PLoiseau
    PForestierColleoni
    MTarisien
    EAtukpor
    VBagnoud
    CBrabetz
    FConsoli
    JDomange
    FHannachi
    PNicola
    MSalvadori
    BZielbauer
    [J]. Matter and Radiation at Extremes, 2024, 9 (02) - 31
  • [2] Vlasov modelling of laser-driven collisionless shock acceleration of protons
    Wettervik, B. Svedung
    DuBois, T. C.
    Fulop, T.
    [J]. PHYSICS OF PLASMAS, 2016, 23 (05)
  • [3] Laser-driven collisionless shock acceleration of protons from gas jets tailored by one or two nanosecond beams
    Bonvalet, J.
    Loiseau, P.
    Marques, J-R
    Atukpor, E.
    D'Humieres, E.
    Domange, J.
    Forestier-Colleoni, P.
    Hannachi, F.
    Lancia, L.
    Raffestin, D.
    Tarisien, M.
    Tikhonchuk, V
    Nicolai, Ph
    [J]. PHYSICS OF PLASMAS, 2021, 28 (11)
  • [4] High-Flux Neutron Generator Based on Laser-Driven Collisionless Shock Acceleration
    Yao, Y. L.
    He, S. K.
    Lei, Z.
    Ye, T.
    Xie, Y.
    Deng, Z. G.
    Cui, B.
    Qi, W.
    Yang, L.
    Zhu, S. P.
    He, X. T.
    Zhou, W. M.
    Qiao, B.
    [J]. PHYSICAL REVIEW LETTERS, 2023, 131 (02)
  • [5] Laser-driven collisionless shock acceleration of ions from near-critical plasmas
    Tochitsky, S.
    Pak, A.
    Fiuza, F.
    Haberberger, D.
    Lemos, N.
    Link, A.
    Froula, D. H.
    Joshi, C.
    [J]. PHYSICS OF PLASMAS, 2020, 27 (08)
  • [6] Identification of electrostatic two-stream instabilities associated with a laser-driven collisionless shock in a multicomponent plasma
    Sakawa, Youichi
    Ohira, Yutaka
    Kumar, Rajesh
    Morace, Alessio
    Dohl, Leonard N. K.
    Woolsey, Nigel
    [J]. PHYSICAL REVIEW E, 2021, 104 (05)
  • [7] Identification of electrostatic two-stream instabilities associated with a laser-driven collisionless shock in a multicomponent plasma
    Sakawa, Youichi
    Ohira, Yutaka
    Kumar, Rajesh
    Morace, Alessio
    Döhl, Leonard N. K.
    Woolsey, Nigel
    [J]. Physical Review E, 2012, 104 (05)
  • [8] Simulation of laser-driven, ablated plasma flows in collisionless shock experiments on OMEGA and the NIF
    Grosskopf, M. J.
    Drake, R. P.
    Kuranz, C. C.
    Rutter, E. M.
    Ross, J. S.
    Kugland, N. L.
    Plechaty, C.
    Remington, B. A.
    Spitkovsky, A.
    Gargate, L.
    Gregori, G.
    Bell, A.
    Murphy, C. D.
    Meinecke, J.
    Reville, B.
    Sakawa, Y.
    Kuramitsu, Y.
    Takabe, H.
    Froula, D. H.
    Fiksel, G.
    Miniati, F.
    Koenig, M.
    Ravasio, A.
    Liang, E.
    Fu, W.
    Woolsey, N.
    Park, H. -S.
    [J]. HIGH ENERGY DENSITY PHYSICS, 2013, 9 (01) : 192 - 197
  • [9] Benchmarking of hydrodynamic plasma waveguides for multi-GeV laser-driven electron acceleration
    Miao, B.
    Rockafellow, E.
    Shrock, J. E.
    Hancock, S. W.
    Gordon, D.
    Milchberg, H. M.
    [J]. PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2024, 27 (08)
  • [10] Hydrodynamic Shaping of Gas Jets for Laser Driven Shock Acceleration of Helium Ions
    Cook, N.
    Tresca, O.
    Dover, N. P.
    Maharjan, C.
    Polyanskiy, M. N.
    Najmudin, Z.
    Shkolnikov, P.
    Pogorelsky, I.
    [J]. ADVANCED ACCELERATOR CONCEPTS, (AAC 2014), 2016, 1777