Origin of quasi-linear superelasticity at high temperature in Ni-Mn-Ga-Co shape memory alloy

被引:4
|
作者
Yang, H. [1 ]
Wang, N. [1 ]
Wang, Y. D. [2 ]
Peng, R. Lin [3 ]
Li, S. L. [2 ]
机构
[1] Jiamusi Univ, Sch Mat Sci & Engn, Key Lab Oral Biomed Mat & Clin Applicat Heilongjia, Jiamusi 154007, Peoples R China
[2] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[3] Linkoping Univ, Dept Management & Engn, Div Engn Mat, SE-58183 Linkoping, Sweden
基金
中国国家自然科学基金;
关键词
Shape memory alloys; In-situ neutron diffraction; Superelasticity; Ni-Mn-Ga-Co; BEHAVIOR; DIFFRACTION; NEUTRON;
D O I
10.1016/j.intermet.2023.108001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The quasi-linear superelasticity in Ni-Mn-Ga-Co shape memory alloy displays a complete recoverable strain of similar to 3% at 473 K for the cubic phase in precursor state. The in-situ neutron diffraction experiments provide the direct evidence on the stress-induced transition from the precursor state to martensite via the continuous variation of lattice parameter and peak width under uniaxial stress field. The anomalous broadening in peak width suggests that the external stress field may trigger very high heterogeneity in lattice distortion for the initial precursor state having randomly-distributed domains with short-range strain ordering prior to the martensitic transformation. The origin of the quasi-linear superelasticity at high temperature is considered as the ruggedness of the local energy landscape. The present investigations provide new insight into the understanding of superelasticity in shape memory alloys.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Anomalous high-temperature quasi-linear superelasticity of Ni-Fe-Ga-Co shape memory alloy
    Yang, H.
    An, K.
    Wang, Y. D.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 909
  • [2] Study of the transformation sequence on a high temperature martensitic transformation Ni-Mn-Ga-Co shape memory alloy
    Recarte, V.
    Perez-Landazabal, J. I.
    Sanchez-Alarcos, V.
    Rodriguez-Velamazan, J. A.
    6TH MEETING OF THE SPANISH NEUTRON SCATTERING ASSOCIATION (SETN2012), 2014, 549
  • [3] Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys
    Cong, D. Y.
    Wang, S.
    Wang, Y. D.
    Ren, Y.
    Zuo, L.
    Esling, C.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 473 (1-2): : 213 - 218
  • [4] Excellent superelasticity in a Co-Ni-Ga high-temperature shape memory alloy processed by directed energy deposition
    Lauhoff, C.
    Sommer, N.
    Vollmer, M.
    Mienert, G.
    Krooss, P.
    Boehm, S.
    Niendorf, T.
    MATERIALS RESEARCH LETTERS, 2020, 8 (08): : 314 - 320
  • [5] Effect of Co Doping on the Elastocaloric Effect of Ni-Mn-Ga-Co Alloy
    Qin, Haixu
    Zheng, Youping
    Yang, Liu
    Sun, Sibo
    Gao, Zhiyong
    JOURNAL OF MAGNETICS, 2023, 28 (03) : 299 - 303
  • [6] Cryogenic rolling induces quasi-linear superelasticity with high strength over a wide temperature range in TiNi shape memory alloys
    Zhao, Shuangshuang
    Liang, Qianglong
    Su, Yunting
    Dong, Tianjiao
    Wang, Dong
    SCRIPTA MATERIALIA, 2024, 243
  • [7] The superelasticity of TiPdNi high temperature shape memory alloy
    Wu, HS
    Tian, QC
    INTERMETALLICS, 2003, 11 (08) : 773 - 778
  • [8] Superelasticity and shape memory effects in polycrystalline Ni-Mn-Ga microwires
    Qian, M. F.
    Zhang, X. X.
    Witherspoon, C.
    Sun, J. F.
    Muellner, P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 577 : S296 - S299
  • [9] Correlation between composition and phase transformation temperatures in Ni-Mn-Ga-Co ferromagnetic shape memory alloys
    Sanchez-Alarcos, V.
    Perez-Landazabal, J. I.
    Recarte, V.
    Gomez-Polo, C.
    Rodriguez-Velamazan, J. A.
    ACTA MATERIALIA, 2008, 56 (19) : 5370 - 5376
  • [10] Effect of chemical ordering annealing on superelasticity of Ni–Mn–Ga–Fe ferromagnetic shape memory alloy microwires
    刘艳芬
    张学习
    沈红先
    孙剑飞
    李奇楠
    刘晓华
    李建军
    程伟东
    Chinese Physics B, 2020, (05) : 483 - 488