Ego Lane Estimation Using Visual Information and High Definition Map

被引:0
|
作者
Yan, Wei [1 ]
Xiao, Ning [1 ]
Jiang, Pan [1 ]
Wang, Hongkai [1 ]
Yuan, Yilong [1 ]
Lin, Liang [1 ]
Liu, Chang [1 ]
机构
[1] Tencent Technol Beijing Co Ltd, Positioning Technol Ctr, Beijing, Peoples R China
关键词
ego lane estimation; high-definition map; multi-element fusion; map constraint; lane tracking;
D O I
10.1109/PLANS53410.2023.10140029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new ego lane estimation method which makes full use of visual information and high-definition map. Compared with existing matching-based method, our method realizes the fusion of multiple road elements using all observed visual information and high-precision map and builds filters to apply map constraints, which achieves higher lane matching accuracy. Lane change information is also used to implement lane tracking for the robustness of our method. The experiment results show that an integrated navigation system based on this method can achieve a lane matching accuracy of more than 94%.
引用
收藏
页码:603 / 608
页数:6
相关论文
共 50 条
  • [1] Ego lane estimation using vehicle observations and map information
    Svensson, Daniel
    Sorstedt, Joakim
    [J]. 2016 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2016, : 909 - 914
  • [2] Lane Line Map Estimation for Visual Alignment
    Son, Minjung
    Chang, Hyun Sung
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY (AIVR 2020), 2020, : 200 - 204
  • [3] Road Lane Semantic Segmentation for High Definition Map
    Jang, Wonje
    An, Jhonghyun
    Lee, Sangyun
    Cho, Minho
    Sun, Myungki
    Kim, Euntai
    [J]. 2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1001 - 1006
  • [4] Lane Marking Verification for High Definition Map Maintenance Using Crowdsourced Images
    Li, Binbin
    Song, Dezhen
    Kingery, Aaron
    Zheng, Dongfang
    Xu, Yiliang
    Guo, Huiwen
    [J]. 2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 2324 - 2329
  • [5] Lane Information Extraction for High Definition Maps Using Crowdsourced Data
    Zhou, Jian
    Guo, Yuan
    Bian, Yaoan
    Huang, Yuanxian
    Li, Bijun
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (07) : 7780 - 7790
  • [6] Robust Ego-motion Estimation and Map Matching Technique for Autonomous Vehicle Localization with High Definition Digital Map
    Han, Seung-Jun
    Kang, Jungyu
    Jo, Yongwoo
    Lee, Dongjin
    Choi, Jeongdan
    [J]. 2018 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2018, : 630 - 635
  • [7] High Definition Map Assisted Vehicle Tracking with Lane Constraint
    Su, Shenghao
    Liu, Mengxin
    Cen, Ming
    [J]. Proceedings of the 32nd Chinese Control and Decision Conference, CCDC 2020, 2020, : 3201 - 3206
  • [8] Ego-Lane Index Estimation Based on Lane-Level Map and LiDAR Road Boundary Detection
    Yu, Baoguo
    Zhang, Hongjuan
    Li, Wenzhuo
    Qian, Chuang
    Li, Bijun
    Wu, Chaozhong
    [J]. SENSORS, 2021, 21 (21)
  • [9] High Definition Map Assisted Vehicle Tracking with Lane Constraint
    Su, Shenghao
    Liu, Mengxin
    Cen, Ming
    [J]. PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 3201 - 3206
  • [10] AN APPROACH OF HIGH DEFINITION MAP INFORMATION INTERACTION
    Zhang, Y. J.
    Huang, W.
    [J]. GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 861 - 866