Algebraic Symplectic Reduction and Quantization of Singular Spaces

被引:0
|
作者
Palamodov, Victor [1 ]
机构
[1] Tel Aviv Univ, IL-66978 Tel Aviv, Ramat Aviv, Israel
关键词
Poisson manifold; constrains; singular symplectic reduction; deformation quantization; Gronewold-Moyal star product; K3; surfaces; MOMENTUM; SYSTEMS;
D O I
10.15407/mag19.01.178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The algebraic method of singular reduction is applied for non regular group action on manifolds which provides singular symplectic spaces. The problem of deformation quantization of the singular surfaces is the focus. For some examples of singular Poisson spaces Grdnewold-Moyal series is explic-itly constructed and convergence is checked. Some examples of deformation quantization of singular Poisson spaces are considered in detail.
引用
收藏
页码:178 / 190
页数:13
相关论文
共 50 条
  • [1] Reduction theory for singular symplectic manifolds and singular forms on moduli spaces
    Matveeva, Anastasia
    Miranda, Eva
    [J]. ADVANCES IN MATHEMATICS, 2023, 428
  • [2] Symplectic reduction and quantization
    Tian, YL
    Zhang, WP
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (04): : 433 - 438
  • [3] Singular symplectic moduli spaces
    D. Kaledin
    M. Lehn
    Ch. Sorger
    [J]. Inventiones mathematicae, 2006, 164 : 591 - 614
  • [4] Singular symplectic moduli spaces
    Kaledin, D
    Lehn, M
    Sorger, C
    [J]. INVENTIONES MATHEMATICAE, 2006, 164 (03) : 591 - 614
  • [5] Geometric quantization and symplectic reduction
    Vergne, M
    [J]. ASTERISQUE, 2002, (282) : 249 - 278
  • [6] Quantization of Dynamical Symplectic Reduction
    Martin Bojowald
    Artur Tsobanjan
    [J]. Communications in Mathematical Physics, 2021, 382 : 547 - 583
  • [7] Toeplitz quantization and symplectic reduction
    Ma, Xiaonan
    Zhang, Weiping
    [J]. DIFFERENTIAL GEOMETRY AND PHYSICS, 2006, 10 : 343 - +
  • [8] Symplectic reduction and family quantization
    Zhang, WP
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (19) : 1043 - 1056
  • [9] Quantization of Dynamical Symplectic Reduction
    Bojowald, Martin
    Tsobanjan, Artur
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 382 (01) : 547 - 583
  • [10] Quantization of algebraic reduction
    Sniatycki, Jedrzej
    [J]. XXVI WORKSHOP ON GEOMETRICAL METHODS IN PHYSICS, 2007, 956 : 27 - 36