Deep learning-based dominant index lesion segmentation for MR-guided radiation therapy of prostate cancer

被引:6
|
作者
Simeth, Josiah [1 ]
Jiang, Jue [1 ]
Nosov, Anton [2 ]
Wibmer, Andreas [2 ]
Zelefsky, Michael [3 ]
Tyagi, Neelam [1 ]
Veeraraghavan, Harini [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY 10065 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY USA
[3] Mem Sloan Kettering Canc Ctr, Dept Radiat Oncol, New York, NY USA
关键词
deep Learning; prostate cancer; radiotherapy; INTENSITY-MODULATED RADIOTHERAPY; DOSE-ESCALATION; LOCAL RECURRENCE; GLEASON SCORE; PRIMARY TUMOR; OUTCOMES; SITE;
D O I
10.1002/mp.16320
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundDose escalation radiotherapy enables increased control of prostate cancer (PCa) but requires segmentation of dominant index lesions (DIL). This motivates the development of automated methods for fast, accurate, and consistent segmentation of PCa DIL. PurposeTo construct and validate a model for deep-learning-based automatic segmentation of PCa DIL defined by Gleason score (GS) >= 3+4 from MR images applied to MR-guided radiation therapy. Validate generalizability of constructed models across scanner and acquisition differences. MethodsFive deep-learning networks were evaluated on apparent diffusion coefficient (ADC) MRI from 500 lesions in 365 patients arising from internal training Dataset 1 (156 lesions in 125 patients, 1.5Tesla GE MR with endorectal coil), testing using Dataset 1 (35 lesions in 26 patients), external ProstateX Dataset 2 (299 lesions in 204 patients, 3Tesla Siemens MR), and internal inter-rater Dataset 3 (10 lesions in 10 patients, 3Tesla Philips MR). The five networks include: multiple resolution residually connected network (MRRN) and MRRN regularized in training with deep supervision implemented into the last convolutional block (MRRN-DS), Unet, Unet++, ResUnet, and fast panoptic segmentation (FPSnet) as well as fast panoptic segmentation with smoothed labels (FPSnet-SL). Models were evaluated by volumetric DIL segmentation accuracy using Dice similarity coefficient (DSC) and the balanced F1 measure of detection accuracy, as a function of lesion aggressiveness and size (Dataset 1 and 2), and accuracy with respect to two-raters (on Dataset 3). Upon acceptance for publication segmentation models will be made available in an open-source GitHub repository. ResultsIn general, MRRN-DS more accurately segmented tumors than other methods on the testing datasets. MRRN-DS significantly outperformed ResUnet in Dataset2 (DSC of 0.54 vs. 0.44, p < 0.001) and the Unet++ in Dataset3 (DSC of 0.45 vs. p = 0.04). FPSnet-SL was similarly accurate as MRRN-DS in Dataset2 (p = 0.30), but MRRN-DS significantly outperformed FPSnet and FPSnet-SL in both Dataset1 (0.60 vs. 0.51 [p = 0.01] and 0.54 [p = 0.049] respectively) and Dataset3 (0.45 vs. 0.06 [p = 0.002] and 0.24 [p = 0.004] respectively). Finally, MRRN-DS produced slightly higher agreement with experienced radiologist than two radiologists in Dataset 3 (DSC of 0.45 vs. 0.41). ConclusionsMRRN-DS was generalizable to different MR testing datasets acquired using different scanners. It produced slightly higher agreement with an experienced radiologist than that between two radiologists. Finally, MRRN-DS more accurately segmented aggressive lesions, which are generally candidates for radiative dose ablation.
引用
收藏
页码:4854 / 4870
页数:17
相关论文
共 50 条
  • [1] Dominant Index Prostatic Lesions Segmentation Using Deep Learning for MR-Guided Radiative Ablation
    Simeth, J.
    Jiang, J.
    Nosov, A.
    Wimber, A.
    Zelefsky, M.
    Tyagi, N.
    Veeraraghavan, H.
    MEDICAL PHYSICS, 2022, 49 (06) : E466 - E466
  • [2] Targeted Radiosensitizers for MR-Guided Radiation Therapy of Prostate Cancer
    Luo, Dong
    Johnson, Andrew
    Wang, Xinning
    Li, Hao
    Erokwu, Bernadette O.
    Springer, Sarah
    Lou, Jason
    Ramamurthy, Gopalakrishnan
    Flask, Chris A.
    Burda, Clemens
    Meade, Thomas J.
    Basilion, James P.
    NANO LETTERS, 2020, 20 (10) : 7159 - 7167
  • [3] Stereotactic MR-Guided Adaptive Radiation Therapy (SMART) for Prostate Cancer
    Lagerwaard, F.
    Bruynzeel, A.
    Tetar, S.
    Oei, S. S.
    Haasbeek, C.
    Slotman, B. J.
    Senan, S.
    Bohoudi, O.
    Palacios, M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (02): : E681 - E682
  • [4] Comprehensive deep learning-based framework for automatic organs-at-risk segmentation in head-and-neck and pelvis for MR-guided radiation therapy planning
    Czipczer, Vanda
    Kolozsvari, Bernadett
    Deak-Karancsi, Borbala
    Capala, Marta E.
    Pearson, Rachel A.
    Borzasi, Emoke
    Egyud, Zsofia
    Gaal, Szilvia
    Kelemen, Gyongyi
    Koszo, Renata
    Paczona, Viktor
    Vegvary, Zoltan
    Karancsi, Zsofia
    Kekesi, Adam
    Czunyi, Edina
    Irmai, Blanka H.
    Keresnyei, Nora G.
    Nagypal, Petra
    Czabany, Renata
    Gyalai, Bence
    Tass, Bulcsu P.
    Cziria, Balazs
    Cozzini, Cristina
    Estkowsky, Lloyd
    Ferenczi, Lehel
    Fronto, Andras
    Maxwell, Ross
    Megyeri, Istvan
    Mian, Michael
    Tan, Tao
    Wyatt, Jonathan
    Wiesinger, Florian
    Hideghety, Katalin
    McCallum, Hazel
    Petit, Steven F.
    Rusko, Laszlo
    FRONTIERS IN PHYSICS, 2023, 11
  • [5] Deep Learning-Based Intraprostatic Lesion Segmentation Using Multi-Parametric MRI For Prostate Radiation Therapy
    Chen, Y.
    Xing, L.
    Bagshaw, H. P.
    Buyyounouski, M. K.
    Han, B.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : S100 - S100
  • [6] Deep Learning Auto-Segmentation on Multi-Sequence MRI for MR-Guided Adaptive Radiation Therapy
    Amjad, A.
    Xu, J.
    Zhu, X.
    Buchanan, L.
    Kun, T.
    O'Connell, N.
    Thill, D.
    Erickson, B. A.
    Hall, W. A.
    Li, A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2021, 111 (03): : E107 - E107
  • [7] Clinical Implementation of MR-guided Radiation Therapy for Prostate Cancer on the Halcyon System
    Zimmermann, M.
    Lange, A.
    Sabatino, M.
    Struck, J.
    Giro, C.
    Wuerschmidt, F.
    Dahle, J.
    Lorenzen, J.
    Kretschmer, M.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2021, 197 (SUPPL 1) : S163 - S163
  • [8] Standardization of Stereotactic MR-Guided Adaptive Radiation Therapy Planning for Prostate Cancer
    Drabble, J.
    Wai, P.
    Chauhan, J.
    Chinherende, E.
    Maungwe, P.
    Murray, D.
    Harford-Wright, H.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E379 - E380
  • [9] Targeted prostate biopsy and MR-guided therapy for prostate cancer
    Woodrum, David A.
    Kawashima, Akira
    Gorny, Krzysztof R.
    Mynderse, Lance A.
    ABDOMINAL RADIOLOGY, 2016, 41 (05) : 877 - 888
  • [10] Stereotactic MR-guided Radiation Therapy of Localized Prostate Cancer - The SMILE Study
    Koerber, S.
    Ristau, J.
    Hoerner-Rieber, J.
    Baumann, L.
    Jaekel, C.
    Klueter, S.
    Buchele, C.
    Niyazi, M.
    Belka, C.
    Andratschke, N.
    Guckenberger, M.
    Debus, J.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2021, 197 (SUPPL 1) : S160 - S160