Prediction of Atrial Fibrillation from Sinus-Rhythm Electrocardiograms Based on Deep Neural Networks: Analysis of Time Intervals and Longitudinal Study

被引:0
|
作者
Melzi, Pietro [1 ,4 ]
Vera-Rodriguez, Ruben [1 ]
Tolosana, Ruben [1 ]
Sanz-Garcia, Ancor [2 ]
Cecconi, Alberto [2 ]
Ortega, Guillermo J. [2 ]
Jimenez-Borreguero, Luis Jesus [2 ,3 ]
机构
[1] Univ Autonoma Madrid, Biometr & Data Pattern Analyt Lab, Labs, C109, C Francisco Tomas & Valiente 11, Madrid 28049, Spain
[2] Inst Invest Sanitaria Hosp Univ Princesa, Calle Diego Leon 62, Madrid 28006, Spain
[3] Ctr Invest Biomed Red Enfermedades Cardiovasc, CIBERCV, Av Monforte Lemos,3-5 Pabellon 11 Planta 0, Madrid 28029, Spain
[4] Escuela Politecn Super, Calle Francisco Tomas & Valiente,11 C-109-bis, Madrid 28049, Spain
基金
欧盟地平线“2020”;
关键词
Atrial fibrillation; Healthcare; Artificial intelligence; Deep learning; ECG; ECG-BASED PREDICTION; PREVALENCE; STROKE; RISK;
D O I
10.1016/j.irbm.2023.100811
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective: Artificial Intelligence (AI) in electrocardiogram (ECG) analysis helps to identify persons at risk of developing atrial fibrillation (AF) and reduces the risk for severe complications. Our aim is to investigate the performance of AI-based methods predicting future AF from sinus rhythm (SR) ECGs, according to different characteristics of patients, time intervals for prediction, and longitudinal measures.Methods: We designed a retrospective, prognostic study to predict AF occurrence in patients from 12-lead SR ECGs. We classified patients in two groups, according to their ECGs: 3,761 developed AF and 22,896 presented only SR ECGs. We assessed the impact of age on the overall performance of deep neural network (DNN)-based systems, which consist in a variation of Residual Networks for time series. Then, we analysed how much in advance our system can predict AF from SR ECGs and the performance for different categories of patients with AUC and other metrics.Results: After balancing the age distribution between the two groups of patients, our model achieves AUC of 0.79 (0.72-0.86) without additional constraints, 0.83 (0.76-0.89) for ECGs recorded in the last six months before AF, and 0.87 (0.81-0.93) for patients with stable AF risk measures over time, with sensitivity of 90.62% (80.70-96.48) and diagnostic odd ratio of 20.49 (8.56-49.09).Conclusion: This study shows the ability of DNNs to predict new onsets of AF from SR ECGs, with the best performance achieved for patients with stable AF risk score over time. The introduction of this time -based score opens new possibilities for AF prediction, thanks to the analysis of long-span time intervals and score stability.(c) 2023 AGBM. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Deep Learning of Electrocardiograms in Sinus Rhythm From US Veterans to Predict Atrial Fibrillation
    Yuan, Neal
    Duffy, Grant
    Dhruva, Sanket S.
    Oesterle, Adam
    Pellegrini, Cara N.
    Theurer, John
    Vali, Marzieh
    Heidenreich, Paul A.
    Keyhani, Salomeh
    Ouyang, David
    JAMA CARDIOLOGY, 2023, 8 (12) : 1131 - 1139
  • [2] Deep-Learning-Based Detection of Paroxysmal Supraventricular Tachycardia Using Sinus-Rhythm Electrocardiograms
    Wang, Lei
    Dang, Shipeng
    Chen, Shuangxiong
    Sun, Jin-Yu
    Wang, Ru-Xing
    Pan, Feng
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (15)
  • [3] Analyzing artificial intelligence systems for the prediction of atrial fibrillation from sinus-rhythm ECGs including demographics and feature visualization
    Melzi, Pietro
    Tolosana, Ruben
    Cecconi, Alberto
    Sanz-Garcia, Ancor
    Ortega, Guillermo J.
    Jesus Jimenez-Borreguero, Luis
    Vera-Rodriguez, Ruben
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [4] Analyzing artificial intelligence systems for the prediction of atrial fibrillation from sinus-rhythm ECGs including demographics and feature visualization
    Pietro Melzi
    Ruben Tolosana
    Alberto Cecconi
    Ancor Sanz-Garcia
    Guillermo J. Ortega
    Luis Jesus Jimenez-Borreguero
    Ruben Vera-Rodriguez
    Scientific Reports, 11
  • [5] An artificial intelligence-based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening
    Hygrell, Tove
    Viberg, Fredrik
    Dahlberg, Erik
    Charlton, Peter H.
    Gudmundsdottir, Katrin Kemp
    Mant, Jonathan
    Hornlund, Josef Lindman
    Svennberg, Emma
    EUROPACE, 2023, 25 (04): : 1332 - 1338
  • [6] Prediction to Atrial Fibrillation Using Deep Convolutional Neural Networks
    Cho, Jungrae
    Kim, Yoonnyun
    Lee, Minho
    PREDICTIVE INTELLIGENCE IN MEDICINE, 2018, 11121 : 164 - 171
  • [7] Classification of atrial fibrillation and normal sinus rhythm based on convolutional neural network
    Huang, Mei-Ling
    Wu, Yan-Sheng
    BIOMEDICAL ENGINEERING LETTERS, 2020, 10 (02) : 183 - 193
  • [8] Classification of atrial fibrillation and normal sinus rhythm based on convolutional neural network
    Mei-Ling Huang
    Yan-Sheng Wu
    Biomedical Engineering Letters, 2020, 10 : 183 - 193
  • [9] Left Atrial Global Longitudinal Strain in the Prediction of Sinus Rhythm Maintenance after Catheter Ablation for Atrial Fibrillation
    Motoki, Hirohiko
    Bhargava, Mandeep
    Wazni, Oussama M.
    Saliba, Walid I.
    Chung, Mina K.
    Marwick, Thomas H.
    Klein, Allan L.
    CIRCULATION, 2012, 126 (21)
  • [10] Distinguishing sinus rhythm from atrial fibrillation on single-lead ECGs using a deep neural network
    Pool, M. Oudkerk
    De Vos, B. D.
    Wolterink, J. M.
    Blok, S.
    Schuuring, M. J.
    Bleijendaal, H.
    Dohmen, D. A. J.
    Tulevski, I. I.
    Somsen, G. A.
    Mulder, B. J. M.
    Pinto, Y.
    Bouma, B. J.
    Isgum, I.
    Winter, M. M.
    EUROPEAN HEART JOURNAL, 2020, 41 : 3442 - 3442