Phylogeny and Morphology Determine Vulnerability to Global Warming in Pristimantis Frogs

被引:0
|
作者
Gonzalez-del-Pliego, Pamela [1 ,2 ]
Freckleton, Robert P. [1 ]
Scheffers, Brett R. [3 ]
Basham, Edmund W. [3 ,4 ]
Acosta-Galvis, Andres R. [5 ,6 ]
Medina Uribe, Claudia A. [6 ]
Haugaasen, Torbjorn [7 ]
Edwards, David P. [1 ]
机构
[1] Univ Sheffield, Sch Biosci, Ecol & Evolutionary Biol, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Evora, MED Inst, Rui Nabeiro Biodivers Chair, P-7000 Evora, Portugal
[3] Univ Florida IFAS, Dept Wildlife Ecol & Conservat, Newins Ziegler Hall, Gainesville, FL 32611 USA
[4] Univ Sheffield, Dept Geog, Sheffield S10 2TN, S Yorkshire, England
[5] Batrachia Fdn, Carrera 58,125B-29, Bogota 111121, Colombia
[6] Inst Invest Recursos Biol Alexander von Humboldt, Calle 28A 15-09, Bogota 111311, Colombia
[7] Norwegian Univ Life Sci, Fac Environm Sci & Nat Resource Management, N-1432 As, Norway
基金
英国自然环境研究理事会;
关键词
amphibians; critical thermal maximum; global warming; phylogenetic signal; Tropical Andes; THERMAL PHYSIOLOGY; LAND-USE; EVOLUTION; HEAT; ADAPTATION; TOLERANCE; BEHAVIOR; INERTIA; TRAITS; LIMITS;
D O I
10.3390/land12010130
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global warming is a great threat to biodiversity with negative impacts spanning the entire biological hierarchy. One of the main species' traits determining survival at higher temperature is the thermal point at which an animal loses its ability to escape from deadly conditions (critical thermal maximum-CTmax). Variation in CTmax across species is the outcome of environmental and evolutionary factors, but studies do not typically measure the degree to which environment or phylogeny influences the variation in trait values. Here, we aim to elucidate whether local environmental variables or phylogeny influence CTmax in highly climate change-threatened amphibians in the Tropical Andes. We measured CTmax from 204 individuals belonging to seven Pristimantis frog species encountered in primary and secondary forests, and cattle pastures. We recorded their habitat, elevation, and the range of environmental temperatures they experienced over one year. Using phylogenetic analyses, we demonstrate that physiological thermal tolerance is related to phylogeny, positively related to body length, but not affected by environmental factors. We suggest that both phylogeny and morphology determine vulnerability to global warming.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Vulnerability of amphibians to global warming
    Pottier, Patrice
    Kearney, Michael R.
    Wu, Nicholas C.
    Gunderson, Alex R.
    Rej, Julie E.
    Rivera-Villanueva, A. Nayelli
    Pollo, Pietro
    Burke, Samantha
    Drobniak, Szymon M.
    Nakagawa, Shinichi
    NATURE, 2025, : 954 - 961
  • [2] Global vulnerability of marine mammals to global warming
    Camille Albouy
    Valentine Delattre
    Giulia Donati
    Thomas L. Frölicher
    Severine Albouy-Boyer
    Marta Rufino
    Loïc Pellissier
    David Mouillot
    Fabien Leprieur
    Scientific Reports, 10
  • [3] Mapping the Vulnerability of Arctic Wetlands to Global Warming
    Karesdotter, Elisie
    Destouni, Georgia
    Ghajarnia, Navid
    Hugelius, Gustaf
    Kalantari, Zahra
    EARTHS FUTURE, 2021, 9 (05)
  • [4] Agricultural vulnerability and adaptation to global, warming in China
    Erda, L
    WATER AIR AND SOIL POLLUTION, 1996, 92 (1-2): : 63 - 73
  • [5] Global warming, elevational ranges and the vulnerability of tropical biota
    Laurance, William F.
    Useche, D. Carolina
    Shoo, Luke P.
    Herzog, Sebastian K.
    Kessler, Michael
    Escobar, Federico
    Brehm, Gunnar
    Axmacher, Jan C.
    Chen, I-Ching
    Arellano Gamez, Lucrecia
    Hietz, Peter
    Fiedler, Konrad
    Pyrcz, Tomasz
    Wolf, Jan
    Merkord, Christopher L.
    Cardelus, Catherine
    Marshall, Andrew R.
    Ah-Peng, Claudine
    Aplet, Gregory H.
    del Coro Arizmendi, M.
    Baker, William J.
    Barone, John
    Bruehl, Carsten A.
    Bussmann, Rainer W.
    Cicuzza, Daniele
    Eilu, Gerald
    Favila, Mario E.
    Hemp, Andreas
    Hemp, Claudia
    Homeier, Juergen
    Hurtado, Johanna
    Jankowski, Jill
    Kattan, Gustavo
    Kluge, Juergen
    Kroemer, Thorsten
    Lees, David C.
    Lehnert, Marcus
    Longino, John T.
    Lovett, Jon
    Martin, Patrick H.
    Patterson, Bruce D.
    Pearson, Richard G.
    Peh, Kelvin S-H
    Richardson, Barbara
    Richardson, Michael
    Samways, Michael J.
    Senbeta, Feyera
    Smith, Thomas B.
    Utteridge, Timothy M. A.
    Watkins, James E.
    BIOLOGICAL CONSERVATION, 2011, 144 (01) : 548 - 557
  • [6] Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming
    Khvorostyanov, D. V.
    Ciais, P.
    Krinner, G.
    Zimov, S. A.
    Corradi, Ch.
    Guggenberger, G.
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2008, 60 (02) : 265 - 275
  • [7] Global vulnerability of marine mammals to global warming (vol 10, 548, 2020)
    Albouy, Camille
    Delattre, Valentine
    Donati, Giulia
    Frolicher, Thomas L.
    Albouy-Boyer, Severine
    Rufino, Marta
    Pellissier, Loic
    Mouillot, David
    Leprieur, Fabien
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [8] Thermal Buffering of Microhabitats is a Critical Factor Mediating Warming Vulnerability of Frogs in the Philippine Biodiversity Hotspot
    Scheffers, Brett R.
    Brunner, Rebecca M.
    Ramirez, Sara D.
    Shoo, Luke P.
    Diesmos, Arvin
    Williams, Stephen E.
    BIOTROPICA, 2013, 45 (05) : 628 - 635
  • [9] Respiratory control in aquatic insects dictates their vulnerability to global warming
    Verberk, Wilco C. E. P.
    Bilton, David T.
    BIOLOGY LETTERS, 2013, 9 (05)
  • [10] Thermal tolerance of Mediterranean marine macrophytes: Vulnerability to global warming
    Savva, Ioannis
    Bennett, Scott
    Roca, Guillem
    Jorda, Gabriel
    Marba, Nuria
    ECOLOGY AND EVOLUTION, 2018, 8 (23): : 12032 - 12043