Modeling mass and heat transfer in membrane humidifiers for polymer electrolyte membrane fuel cells

被引:2
|
作者
Schoenfeld, Ladislaus [1 ]
Kreitmeir, Michael [1 ]
Wolfenstetter, Florian [1 ]
Neumann, Maximilian [1 ]
Klein, Harald [1 ]
Rehfeldt, Sebastian [1 ]
机构
[1] Tech Univ Munich, Inst Plant & Proc Technol, TUM Sch Engn & Design, Dept Energy & Proc Engn, Boltzmannstr 15, 85748 Garching, Germany
关键词
PEM fuel cells; Membrane; Humidification; Heat and mass transfer; Modeling; PERFLUOROSULFONIC-ACID MEMBRANES; PROTON-EXCHANGE MEMBRANES; WATER SORPTION; THERMODYNAMIC MODEL; ENTHALPY EXCHANGER; NAFION MEMBRANES; TRANSPORT; PERMEATION; FLOW; HUMIDIFICATION;
D O I
10.1016/j.ijheatmasstransfer.2024.125260
中图分类号
O414.1 [热力学];
学科分类号
摘要
Water management is essential for the performance and durability of fuel cells in automotive applications. External membrane humidification is the preferred method for this task, as no additional energy or water supply is required. Accurate models of the water transport through the semipermeable membrane can support the design and operation of humidifiers. In this work, an analytical model is proposed that accounts for coupled mass and heat transfer, gas boundary layers, developing flows, and membrane properties at typical operating conditions. The model is validated against experimental data measured with pure Nafion (R) membranes and an experimental composite membrane. The operating conditions cover a range from 40 to 90 % for the relative humidity, from 1.5 to 2.5 bar for the pressure, and from 340 to 360 K for the temperature. Almost all of the predicted data is within +/- 30 % of the experimental values without the need for any fitting parameters. An analysis of the mass transfer resistances reveals that the membrane and boundary layer resistances both contribute significantly to the total resistance.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Characteristics of membrane humidifiers for polymer electrolyte membrane fuel cells
    Se-Kyu Park
    Eun Ae Cho
    In-Hwan Oh
    [J]. Korean Journal of Chemical Engineering, 2005, 22 : 877 - 881
  • [2] Characteristics of membrane humidifiers for polymer electrolyte membrane fuel cells
    Park, SK
    Cho, EA
    Oh, IH
    [J]. KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2005, 22 (06) : 877 - 881
  • [3] Review of computational heat and mass transfer modeling in polymer-electrolyte-membrane (PEM) fuel cells
    Siegel, C.
    [J]. ENERGY, 2008, 33 (09) : 1331 - 1352
  • [4] Experimental study on water transport in membrane humidifiers for polymer electrolyte membrane fuel cells
    Wolfenstetter, Florian
    Kreitmeir, Michael
    Schoenfeld, Ladislaus
    Klein, Harald
    Becker, Marc
    Rehfeldt, Sebastian
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (55) : 23381 - 23392
  • [5] Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells
    Johanek, Viktor
    Ostroverkh, Anna
    Fiala, Roman
    Rednyk, Andrii
    Matolin, Vladimir
    [J]. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY, 2016, 2016
  • [6] Evaporation Modeling for Polymer Electrolyte Membrane Fuel Cells
    Fritz, D. L., III
    Allen, J. S.
    [J]. PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 49 - 58
  • [7] Effectiveness correlations for heat and mass transfer in membrane humidifiers
    Kadylak, David
    Cave, Peter
    Merida, Walter
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (5-6) : 1504 - 1509
  • [8] On the modeling of water transport in polymer electrolyte membrane fuel cells
    Wu, Hao
    Li, Xianguo
    Berg, Peter
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (27) : 6913 - 6927
  • [9] Polymer Electrolyte Membrane Fuel Cells
    Antonio Asensio, Juan
    Pena, Juan
    Perez-Coll, Domingo
    Carlos Ruiz-Morales, Juan
    Marrero-Lopez, David
    Nunez, Pedro
    Ballesteros, Belen
    Canales-Vazquez, Jesus
    Borros, Salvador
    Gomez-Romero, Pedro
    [J]. AFINIDAD, 2011, 68 (554) : 246 - 258
  • [10] Mass transfer formulation for polymer electrolyte membrane fuel cell cathode
    Beale, Steven B.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (35) : 11641 - 11650