Iscalc: An Interactive Symbolic Computation Framework (System Description)

被引:0
|
作者
Zhan, Bohua [1 ,2 ]
Fan, Yuheng [3 ]
Xiong, Weiqiang [2 ]
Xu, Runqing [1 ]
机构
[1] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Natl Comp Syst Engn Res Inst China, Beijing, Peoples R China
来源
AUTOMATED DEDUCTION, CADE 29 | 2023年 / 14132卷
基金
中国国家自然科学基金;
关键词
Symbolic computation; User interface; Computer algebra; PROVER;
D O I
10.1007/978-3-031-38499-8_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The need to verify symbolic computation arises in diverse application areas. In this paper, based on earlier work on verifying computation of definite integrals in HolPy, we present a tool Iscalc for performing a variety of symbolic computations interactively, taking a middle ground in terms of easy of use and rigor between computer algebra systems and interactive theorem provers. The tool supports user-level definitions and dependency among computations, allowing construction and reuse of custom theories. Side conditions are checked on a best-effort basis. The tool is applied to highly non-trivial computations from the textbook Inside Interesting Integrals.
引用
收藏
页码:577 / 589
页数:13
相关论文
共 50 条
  • [1] A framework for the symbolic computation of HolorGraphic models
    Baciu, G
    Sun, HQ
    [J]. 1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 3049 - 3054
  • [2] SymGrid: A framework for symbolic computation on the grid
    Hammond, Kevin
    Al Zain, Abdallah
    Cooperman, Gene
    Petcu, Dana
    Trinder, Phil
    [J]. EURO-PAR 2007 PARALLEL PROCESSING, PROCEEDINGS, 2007, 4641 : 457 - +
  • [3] Machine cognition and learning based on interactive symbolic computation
    Chen, Guangxi
    Zeng, Zhenbing
    Bi, Zhongqin
    [J]. 2007 INTERNATIONAL CONFERENCE ON INTELLIGENT PERVASIVE COMPUTING, PROCEEDINGS, 2007, : 456 - +
  • [4] THE MINISAC SYSTEM FOR SYMBOLIC COMPUTATION
    BARANOV, SN
    [J]. PROGRAMMING AND COMPUTER SOFTWARE, 1993, 19 (03) : 129 - 136
  • [5] The TOPAS symbolic computation system
    Coelho, A. A.
    Evans, John S. O.
    Evans, Ivana R.
    Kern, A.
    Parsons, S.
    [J]. POWDER DIFFRACTION, 2011, 26 : S22 - S25
  • [6] A symbolic framework for the description of tree architecture models
    Robinson, DF
    [J]. BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, 1996, 121 (03): : 243 - 261
  • [7] Web Physics Ontology Online Interactive Symbolic Computation in Physics
    Cvjetkovic, Vladimir
    [J]. PROCEEDINGS OF 2017 4TH EXPERIMENT@INTERNATIONAL CONFERENCE (EXP.AT'17), 2017, : 52 - 57
  • [8] Design space description through adaptive sampling and symbolic computation
    Zhao, Fei
    Grossmann, Ignacio E.
    Garcia-Munoz, Salvador
    Stamatis, Stephen D.
    [J]. AICHE JOURNAL, 2022, 68 (05)
  • [9] Bilingual complexes: the perspective of the Gradient Symbolic Computation framework
    Muysken, Pieter
    [J]. BILINGUALISM-LANGUAGE AND COGNITION, 2016, 19 (05) : 891 - 892
  • [10] System identifiability (symbolic computation) and parameter estimation (numerical computation)
    Denis-Vidal, L
    Joly-Blanchard, G
    Noiret, C
    [J]. NUMERICAL ALGORITHMS, 2003, 34 (2-4) : 283 - 292