Learning-Based THz Multi-Layer Imaging With Model-Based Masks

被引:0
|
作者
Wang, P. [1 ]
Koike-Akino, T. [1 ]
Boufounos, P. [1 ]
Tsujita, W. [1 ]
Yamashita, G. [2 ]
Fukuta, T. [2 ]
Nakajima, M. [3 ]
机构
[1] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
[2] Mitsubishi Elect Corp Adv Technology R&D Ctr, Amagasaki, Hyogo 6618661, Japan
[3] Osaka Univ, Inst Laser Engn, Osaka 5650871, Japan
关键词
D O I
10.1109/IRMMW-THz57677.2023.10299043
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper demonstrates a learning-based THz multi-layer pixel identification for non-destructive inspection. Specifically, we introduce a recurrent neural network that sequentially learns features from THz spectrogram segments with masks from model-based sparse deconvolution. Initial performance evaluation on a three-layer sample with contents on all surfaces confirms the effectiveness of the proposed method.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Learning-Based THz Multi-Layer Imaging for High-Capacity Positioning
    Wang, P.
    Koike-Akino, T.
    Ma, R.
    Orlik, P., V
    Yamashita, G.
    Tsujita, W.
    Nakajima, M.
    [J]. 2021 46TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ), 2021,
  • [2] Learning-Based Shadow Mitigation for Terahertz Multi-Layer Imaging
    Wang, P.
    Koike-Akino, T.
    Bose, A.
    Ma, Rui
    Orlik, P., V
    Tsujita, W.
    Sadamoto, K.
    Tsutada, H.
    Soltanalian, M.
    [J]. 2019 44TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2019,
  • [3] A multi-layer guided reinforcement learning-based tasks offloading in edge computing
    Robles-Enciso, Alberto
    Skarmeta, Antonio F.
    [J]. COMPUTER NETWORKS, 2023, 220
  • [4] Quantum Feature Extraction for THz Multi-Layer Imaging
    Koike-Akino, T.
    Wang, P.
    Yamashita, G.
    Tsujita, W.
    Nakajima, M.
    [J]. 2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [5] Machine Learning-Based Multi-Layer Multi-Hop Transmission Scheme for Dense Networks
    El-Banna, Ahmad A. Aziz
    ElHalawany, Basem M.
    Zaky, Ahmed B.
    Huang, Joshua Zhexue
    Wu, Kaishun
    [J]. IEEE COMMUNICATIONS LETTERS, 2019, 23 (12) : 2238 - 2242
  • [6] Multi-layer Rotation Memory Model-based correlation filter for visual tracking
    Zhao, Yufei
    Song, Yong
    Li, Guoqi
    Deng, Lei
    Bai, Yashuo
    Wu, Xiyan
    [J]. FRONTIERS IN PHYSICS, 2022, 10
  • [7] A Multi-layer Machine Learning-based Intrusion Detection System for Wireless Sensor Networks
    Alruhaily, Nada M.
    Ibrahim, Dina M.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (04) : 281 - 288
  • [8] A deep learning-based model for tropospheric wet delay prediction based on multi-layer 1D convolution neural network
    Bi, Haohang
    Huang, Liangke
    Zhang, Hongxing
    Xie, Shaofeng
    Zhou, Lv
    Liu, Lilong
    [J]. ADVANCES IN SPACE RESEARCH, 2024, 73 (10) : 5031 - 5042
  • [9] Multi-robot formation control: a comparison between model-based and learning-based methods
    Jiang, Chao
    Chen, Zhuo
    Guo, Yi
    [J]. JOURNAL OF CONTROL AND DECISION, 2020, 7 (01) : 90 - 108
  • [10] THz Multi-Layer Imaging via Nonlinear Inverse Scattering
    Bose, A.
    Kadu, A.
    Mansour, H.
    Wang, P.
    Boufounos, P.
    Orlik, P., V
    Soltanalian, M.
    [J]. 2019 44TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ), 2019,