Automatic segmentation of abdominal aortic aneurysms from CT angiography using a context-aware cascaded U-Net

被引:8
|
作者
Mu, Nan [1 ]
Lyu, Zonghan [1 ]
Rezaeitaleshmahalleh, Mostafa [1 ]
Zhang, Xiaoming [2 ]
Rasmussen, Todd [2 ]
McBane, Robert [2 ]
Jiang, Jingfeng [1 ,3 ,4 ]
机构
[1] Michigan Technol Univ, Biomed Engn, Houghton, MI 49931 USA
[2] Mayo Clin, Rochester, MN 55902 USA
[3] Michigan Technol Univ, Hlth Res Inst, Inst Comp & Cybernet, Ctr Biocomp & Digital Hlth, Houghton, MI 49931 USA
[4] M&M 309,1400 Townsend Dr, Houghton, MI 49931 USA
基金
美国国家卫生研究院;
关键词
Abdominal aortic aneurysm; Context-aware; Geometrical analysis; Image segmentation; Neural network; Deep-learning; THROMBUS SEGMENTATION; MORTALITY; SOCIETY; GROWTH;
D O I
10.1016/j.compbiomed.2023.106569
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We delineate abdominal aortic aneurysms, including lumen and intraluminal thrombosis (ILT), from contrast-enhanced computed tomography angiography (CTA) data in 70 patients with complete automation. A novel context-aware cascaded U-Net configuration enables automated image segmentation. Notably, auto-context structure, in conjunction with dilated convolutions, anisotropic context module, hierarchical supervision, and a multi-class loss function, are proposed to improve the delineation of ILT in an unbalanced, low-contrast multi-class labeling problem.A quantitative analysis shows that the automated image segmentation produces comparable results with trained human users (e.g., DICE scores of 0.945 and 0.804 for lumen and ILT, respectively). Resultant morphological metrics (e.g., volume, surface area, etc.) are highly correlated to those parameters generated by trained human users. In conclusion, the proposed automated multi-class image segmentation tool has the po-tential to be further developed as a translational software tool that can be used to improve the clinical man-agement of AAAs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Context-Aware U-Net for Biomedical Image Segmentation
    Leng, Jiaxu
    Liu, Ying
    Zhang, Tianlin
    Quan, Pei
    Cui, Zhenyu
    [J]. PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2535 - 2538
  • [2] Adjusting U-Net for the aortic abdominal aneurysm CT segmentation case
    Epifanov, R. U.
    Nikitin, N. A.
    Rabtsun, A. A.
    Kurdyukov, L. N.
    Karpenko, A. A.
    Mullyadzhanov, R. I.
    [J]. COMPUTER OPTICS, 2024, 48 (03) : 418 - 424
  • [3] Context-aware Attention U-Net for the segmentation of pores in Lamina Cribrosa using partial points annotation
    Ding, Nan
    Urien, Helene
    Rossant, Florence
    Sublime, Jeremie
    Paques, Michel
    [J]. 2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 537 - 542
  • [4] Modified U-Net for fully automatic liver segmentation from abdominal CT-image
    Mourya, Gajendra Kumar
    Paul, Sudip
    Handique, Akash
    Baid, Ujjwal
    Dutande, Prasad Vilas
    Talbar, Sanjay Nilkant
    [J]. INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2022, 40 (01) : 1 - 17
  • [5] CAUNet: Context-Aware U-Net for Speech Enhancement in Time Domain
    Wang, Kai
    He, Bengbeng
    Zhu, Wei-Ping
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [6] Pancreas Segmentation in Abdominal CT Images with U-Net Model
    Kurnaz, Ender
    Ceylan, Rahime
    [J]. 2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [7] Context-Aware Attentional Graph U-Net for Hyperspectral Image Classification
    Lin, Moule
    Jing, Weipeng
    Di, Donglin
    Chen, Guangsheng
    Song, Houbing
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [8] Automatic Skeleton Segmentation in CT Images Based on U-Net
    Milara, Eva
    Gomez-Grande, Adolfo
    Sarandeses, Pilar
    Seiffert, Alexander P.
    Gomez, Enrique J.
    Sanchez-Gonzalez, Patricia
    [J]. JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024,
  • [9] Automatic Lung Segmentation on Thoracic CT Scans using U-Net Convolutional Network
    Shaziya, Humera
    Shyamala, K.
    Zaheer, Raniah
    [J]. PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2018, : 643 - 647
  • [10] Multi-path cascaded U-net for vessel segmentation from fundus fluorescein angiography sequential images
    Sun, Gang
    Liu, Xiaoyan
    Yu, Xuefei
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 211