Sobolev-Type Embeddings for Neural Network Approximation Spaces

被引:0
|
作者
Grohs, Philipp [1 ,2 ,3 ]
Voigtlaender, Felix [1 ,4 ]
机构
[1] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
[2] Uni Vienna, Res Network Data Sci, Wahringer Str 29-S6, A-1090 Vienna, Austria
[3] Johann Radon Inst, Altenberger Str 69, A-4040 Linz, Austria
[4] Tech Univ Munich, Dept Math, Boltzmannstr 3, D-85748 Garching, Germany
关键词
Deep neural networks; Approximation spaces; Holder spaces; Embedding theorems; Optimal learning algorithms;
D O I
10.1007/s00365-022-09598-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider neural network approximation spaces that classify functions according to the rate at which they can be approximated (with error measured in L-P) by ReLU neural networks with an increasing number of coefficients, subject to bounds on the magnitude of the coefficients and the number of hidden layers. We prove embedding theorems between these spaces for different values of P. Furthermore, we derive sharp embeddings of these approximation spaces into Holder spaces. We find that, analogous to the case of classical function spaces (such as Sobolev spaces, or Besov spaces) it is possible to trade "smoothness" (i.e., approximation rate) for increased integrability. Combined with our earlier results in Grohs and Voigtlaender (Proof of the theory-to-practice gap in deep learning via sampling complexity bounds for neural network approximation spaces, 2021. arXiv preprint arXiv:2104.02746), our embedding theorems imply a somewhat surprising fact related to "learning" functions from a given neural network space based on point samples: if accuracy is measured with respect to the uniform norm, then an optimal "learning" algorithm for reconstructing functions that are well approximable by ReLU neural networks is simply given by piecewise constant interpolation on a tensor product grid.
引用
收藏
页码:579 / 599
页数:21
相关论文
共 50 条
  • [1] Sobolev-Type Embeddings for Neural Network Approximation Spaces
    Philipp Grohs
    Felix Voigtlaender
    Constructive Approximation, 2023, 57 : 579 - 599
  • [2] Compactness of Sobolev-type embeddings with measures
    Cavaliere, Paola
    Mihula, Zdenek
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (09)
  • [3] Higher-order Sobolev-type embeddings on Carnot-Caratheodory spaces
    Francu, Martin
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) : 1033 - 1052
  • [4] Embeddings of Sobolev-type spaces into generalized Holder spaces involving k-modulus of smoothness
    Gogatishvili, Amiran
    Moura, Susana D.
    Neves, Julio S.
    Opic, Bohumir
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (02) : 425 - 450
  • [5] FOURIER APPROXIMATION AND TYPE OF EMBEDDINGS OF SOBOLEV SPACES ON BOUNDED DOMAINS
    EDMUNDS, DE
    MOSCATELLI, VB
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (13): : 889 - 892
  • [6] Approximation numbers of embeddings of Sobolev spaces
    Edmunds, DE
    Ilyin, AA
    MATHEMATISCHE ZEITSCHRIFT, 1996, 221 (02) : 177 - 187
  • [7] Rational approximation and Sobolev-type orthogonality
    Diaz-Gonzalez, Abel
    Pijeira-Cabrera, Hector
    Perez-Yzquierdo, Ignacio
    JOURNAL OF APPROXIMATION THEORY, 2020, 260
  • [8] Characterization of embeddings of Sobolev-type spaces into generalized Holder spaces defined by LP-modulus of smoothness
    Gogatishvili, Amiran
    Neves, Julio S.
    Opic, Bohumir
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (02) : 636 - 657
  • [9] ON COMPACTLY-SUPPORTED APPROXIMATION OF DIFFERENTIAL FORMS IN WEIGHTED SOBOLEV-TYPE SPACES
    KUZMINOV, VI
    SHVEDOV, IA
    SIBERIAN MATHEMATICAL JOURNAL, 1993, 34 (06) : 1081 - 1100
  • [10] Bessel potentials with logarithmic components and Sobolev-type embeddings
    Opic B.
    Trebels W.
    Analysis Mathematica, 2000, 26 (4) : 299 - 319