Temporally-Adaptive Robust Data-Driven Sparse Voltage Sensitivity Estimation for Large-Scale Realistic Distribution Systems With PVs

被引:5
|
作者
Liang, Yingqi [1 ]
Zhao, Junbo [2 ]
Siano, Pierluigi [3 ,4 ]
Srinivasan, Dipti [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[2] Univ Connecticut, Dept Elect & Comp Engn, Storrs, CT 06269 USA
[3] Univ Salerno, Dept Management & Innovat Syst, I-84084 Fisciano, Italy
[4] Univ Johannesburg, Johannesburg, South Africa
关键词
Adaptive regularization; PV impact; QSTS simulation; robust estimation; sparse estimation; voltage sensitivity; IMPACT;
D O I
10.1109/TPWRS.2023.3256131
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes a new robust data-driven sparse voltage sensitivity estimation approach for large-scale distribution systems with PVs. It has a high statistical efficiency to mitigate the impacts of PV stochasticity and unknown measurement noise under various system operating conditions. A new adaptively-weighted l(1) sparsity-promoting regularization is developed, exploiting the temporal characteristic of time-varying sensitivities for better accuracy. The l(2) regularization is used to mitigate collinearity impacts. The Huber loss function and a concomitant scale estimate are adopted to mitigate the impacts of unknown and non-Gaussian noise. These techniques are implemented in a fast recursive parallel computing framework. The proposed estimator is tested by quasi-static time series simulations of a large three-phase unbalanced system with PVs and various discrete time-delayed control devices. Results validate the superior robustness and efficiency of the proposed estimator over existing alternatives.
引用
收藏
页码:3977 / 3980
页数:4
相关论文
共 50 条
  • [1] Sparse data-driven wavefront prediction for large-scale adaptive optics
    Cerqueira, Paulo
    Piscaer, Pieter
    Verhaegen, Michel
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (07) : 992 - 1002
  • [2] Data-Driven Robust and Sparse Solutions for Large-scale Fuzzy Portfolio Optimization
    Yu, Na
    Liang, You
    Thavaneswaran, A.
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [3] Data-driven realistic animation of large-scale forest
    School of Computer Science, Wuhan University, Wuhan 430079, China
    不详
    不详
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2008, 20 (08): : 1015 - 1022
  • [4] A Data-driven Mechanism for Large-scale Data Distribution
    Shi Peichang
    Li Yiying
    Ding Bo
    Jiang Longquan
    Liu Hui
    Zhang Jie
    2016 WORLD AUTOMATION CONGRESS (WAC), 2016,
  • [5] Data-driven adaptive and stable feature selection method for large-scale industrial systems
    Zhu, Xiuli
    Song, Yan
    Wang, Peng
    Li, Ling
    Fu, Zixuan
    CONTROL ENGINEERING PRACTICE, 2024, 153
  • [6] In Situ Data-Driven Adaptive Sampling for Large-scale Simulation Data Summarization
    Biswas, Ayan
    Dutta, Soumya
    Pulido, Jesus
    Ahrens, James
    PROCEEDINGS OF IN SITU INFRASTRUCTURES FOR ENABLING EXTREME-SCALE ANALYSIS AND VISUALIZATION (ISAV 2018), 2018, : 13 - 18
  • [7] Data-driven robust optimization for the itinerary planning via large-scale GPS data
    Wu, Lei
    Hifi, Mhand
    KNOWLEDGE-BASED SYSTEMS, 2021, 231
  • [8] Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach
    Shen, Feifei
    Zhao, Liang
    Du, Wenli
    Zhong, Weimin
    Qian, Feng
    APPLIED ENERGY, 2020, 259 (259)
  • [9] Robust Learning-assisted Data-driven Congestion Management via Sparse Sensitivity Estimation
    Liang, Yingqi
    Zhao, Junbo
    Srinivasan, Dipti
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 315 - 320
  • [10] Distributed data-driven optimal fault detection for large-scale systems
    Li, Linlin
    Ding, Steven X.
    Peng, Xin
    JOURNAL OF PROCESS CONTROL, 2020, 96 : 94 - 103