Predicting Traffic Performance During a Wildfire Using Machine Learning

被引:4
|
作者
Hou, Zenghao [1 ]
Darr, Justin [1 ]
Zhang, Michael [1 ]
机构
[1] Univ Calif Davis, Dept Civil & Environm Engn, Davis, CA 95616 USA
关键词
sustainability and resilience; disaster response; recovery; and business continuity; natural hazards and extreme weather events; extreme weather events; WESTERN US; EVACUATION; URBAN; SIMULATION; MODEL; FIRE;
D O I
10.1177/03611981221126509
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Many places around the world periodically suffer from wildfires that threaten lives and disrupt normal traffic operations. Poor traffic performance during wildfires can inhibit the effectiveness of evacuations. Understanding traffic performance during a wildfire would therefore help transportation operators develop emergency traffic control plans. In this study, we developed a traffic speed and flow prediction model that uses support vector regression (SVR), for use during wildfire incidents. This was constructed using historical data for wildfires in California from 2010 to 2019, which were paired with records of the traffic speed and flow on adjacent highways and the prevailing weather conditions during the wildfire events. The results showed that traffic performance during a wildfire could be predicted using the SVR model. Based on our prediction results, we recommend that policies be implemented to encourage or mandate more detailed data collection of wildfire events, such as the fire's boundary over time, to facilitate better prediction results in models like the one proposed in this paper. This paper should inspire further work on the topic to improve the model and provide a reliable prediction tool for transportation operators in the future.
引用
收藏
页码:1625 / 1636
页数:12
相关论文
共 50 条
  • [1] Predicting Wildfire using Live Fuel Moisture Content with Machine Learning
    Cheruku, Ramalingaswamy
    Kohli, Aman
    Kodali, Prakash
    Kavati, Ilaiah
    Sureshbabu, E.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [2] Predicting Traffic Flow on Faulty Traffic Detectors Using Machine Learning Techniques
    Bagabaldo, Alben Rome B.
    Gonzalez, Marta C.
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2022: APPLICATION OF EMERGING TECHNOLOGIES, 2022, : 202 - 212
  • [3] Predicting Traffic Incident Severity Level Using Machine Learning
    Elawady, Ahmed
    Khetrish, Abdulrauf
    Hamad, Khaled
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 432 - 437
  • [4] Predicting Directional Traffic Volume at Intersections with Automated Traffic Signal Performance Measures Data Using Machine Learning Algorithms
    Wang, Bangyu
    Fulda, Nancy
    Huang, Zhengyang
    Schultz, Grant G.
    Macfarlane, Gregory S.
    Arnesen, Joseph
    Khayyat, Adnan
    TRANSPORTATION RESEARCH RECORD, 2024,
  • [5] Using Machine Learning in Predicting the Impact of Meteorological Parameters on Traffic Incidents
    Aleksic, Aleksandar
    Randelovic, Milan
    Randelovic, Dragan
    MATHEMATICS, 2023, 11 (02)
  • [6] Predicting performance of swimmers using machine learning techniques
    Guerra-Salcedo, Cesar M.
    Janek, Libor
    Perez-Ortega, Joaquin
    Pazos-Rangel, Rodolfo A.
    WMSCI 2005: 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Vol 3, 2005, : 146 - 148
  • [7] Predicting Student Academic Performance Using Machine Learning
    Ojajuni, Opeyemi
    Ayeni, Foluso
    Akodu, Olagunju
    Ekanoye, Femi
    Adewole, Samson
    Ayo, Timothy
    Misra, Sanjay
    Mbarika, Victor
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT IX, 2021, 12957 : 481 - 491
  • [8] Predicting biathlon shooting performance using machine learning
    Maier, Thomas
    Meister, Daniel
    Trosch, Severin
    Wehrlin, Jon Peter
    JOURNAL OF SPORTS SCIENCES, 2018, 36 (20) : 2333 - 2339
  • [9] California Wildfire Prediction using Machine Learning
    Pham, Kaylee
    Ward, David
    Rubio, Saulo
    Shin, David
    Zlotikman, Lior
    Ramirez, Sergio
    Poplawski, Tyler
    Jiang, Xunfei
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 525 - 530
  • [10] Predicting students' performance in distance learning using machine learning techniques
    Kotsiantis, S
    Pierrakeas, C
    Pintelas, P
    APPLIED ARTIFICIAL INTELLIGENCE, 2004, 18 (05) : 411 - 426