H1-L1Boundedness of Pseudo-differential Operators with Forbidden Amplitudes

被引:0
|
作者
Qian, Lixin [1 ]
Wu, Xiaomei [2 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Peoples R China
[2] Jiaxing Univ, Coll Data Sci, Jiaxing 314001, Peoples R China
基金
中国国家自然科学基金;
关键词
Pseudo-differential operator; forbidden amplitude; Hormander class; H(1)space; CONTINUITY; BOUNDEDNESS;
D O I
10.1007/s00009-023-02462-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we consider a pseudo-differential operator T-a defined as T(a)f(x) = integral(Rn) integral(Rn) e(a)(2 pi i(x - y)center dot xi)(x, y, xi)f(y)d xi dy. If 0 <= rho, delta < 1 and a(x, y, xi) satisfies that sup(y,xi epsilon Rn) (1 + vertical bar xi vertical bar)(n(1-rho)+rho N - delta M) vertical bar vertical bar del(N)(xi)del(M)(y) a(center dot, y, xi) vertical bar vertical bar L-infinity(R-n) < +infinity for any N <= n+1 and M <= 1, then we show that the pseudo-differential operator T-a is bounded from H-1 to L-1. However, this result is not true if rho = 1 or delta = 1.
引用
收藏
页数:12
相关论文
共 50 条