Data-driven modelling for online fault pre-warning in thermal power plant using incremental Gaussian mixture regression

被引:0
|
作者
Jin, Shengxiang [1 ]
Si, Fengqi [1 ]
Dong, Yunshan [2 ]
Ren, Shaojun [1 ]
机构
[1] Southeast Univ, Sch Energy & Environm, Nanjing, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
data-driven modelling; Gaussian mixture regression; incremental learning; online fault pre-warning; thermal power plant; DIAGNOSIS METHOD; TURBINE;
D O I
10.1002/cjce.25133
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This study introduces a data-driven model for online fault pre-warning in thermal power plants using incremental Gaussian mixture regression. To tackle the issue of outdated parameters in existing fault pre-warning models, this study puts forth an incremental Gaussian mixture regression that leverages the merging of Gaussian components to reconstruct the model and enable online modelling. Due to its criticality, a forgetting factor is introduced during the merging process to efficiently manage the weight allocation between present and historical patterns, thereby guaranteeing the model's accuracy. The results of the sine function case demonstrate that the incremental Gaussian mixture regression (IGMR) model exhibits excellent pattern control performance and modelling efficiency. Furthermore, the IGMR model is employed to forecast parameter alterations in pulverizer blockages with mode switching, and experimental validation indicates that IGMR precisely anticipates parameter changes following mode switching. Compared to on-site solutions, the pre-warning of coal blockage has a clear advantage in advance warning.
引用
收藏
页码:1497 / 1508
页数:12
相关论文
共 50 条
  • [1] Data-driven estimation of air mass using Gaussian mixture regression
    Kolewe, B.
    Haghani, A.
    Beckmann, R.
    Noack, R.
    Jeinsch, T.
    2014 IEEE 23RD INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2014, : 2433 - 2438
  • [2] An Online Data-Driven Fault Diagnosis and Thermal Runaway Early Warning for Electric Vehicle Batteries
    Sun, Zhenyu
    Wang, Zhenpo
    Liu, Peng
    Qin, Zian
    Chen, Yong
    Han, Yang
    Wang, Peng
    Bauer, Pavol
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (10) : 12636 - 12646
  • [3] Data-Driven Event Assessment in Power Systems using Gaussian Mixture Models
    Chowdhury, Sirin Duna
    Senroy, Nilanjan
    De, Swades
    2019 IEEE MILAN POWERTECH, 2019,
  • [4] Fault Diagnosis Of Electric Actuator In The Thermal Power Plant Based On Data-Driven
    Wang Ying-min
    Yang Feng-bin
    ICEET: 2009 INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT TECHNOLOGY, VOL 1, PROCEEDINGS, 2009, : 667 - +
  • [5] Neural network-based data-driven modelling of anomaly detection in thermal power plant
    Banjanovic-Mehmedovic, Lejla
    Hajdarevic, Amel
    Kantardzic, Mehmed
    Mehmedovic, Fahrudin
    Dzananovic, Izet
    AUTOMATIKA, 2017, 58 (01) : 69 - 79
  • [6] A Gaussian mixture modelling approach to the data-driven estimation of atomistic support for continuum stress
    Ulz, Manfred H.
    Moran, Sean J.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2012, 20 (06)
  • [7] Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data
    Jiang, Lulu
    Deng, Zhongwei
    Tang, Xiaolin
    Hu, Lin
    Lin, Xianke
    Hu, Xiaosong
    ENERGY, 2021, 234
  • [8] Gaussian mixture regression and local linear network model for data-driven estimation of air mass
    Kolewe, Bjoern
    Haghani, Adel
    Beckmann, Robert
    Jeinsch, Torsten
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (07): : 1083 - 1092
  • [9] Data-driven Soft Sensors using Factor Graphs and Gaussian Mixture Models
    Gienger, Andreas
    Sawodny, Oliver
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 4466 - 4471
  • [10] Data-driven stochastic AC-OPF using Gaussian process regression
    Mitrovic, Mile
    Lukashevich, Aleksandr
    Vorobev, Petr
    Terzija, Vladimir
    Budennyy, Semen
    Maximov, Yury
    Deka, Deepjyoti
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 152