Forward stagewise regression with multilevel memristor for sparse coding

被引:3
|
作者
Wu, Chenxu [1 ]
Xue, Yibai [1 ]
Bao, Han [1 ]
Yang, Ling [1 ]
Li, Jiancong [1 ]
Tian, Jing [1 ]
Ren, Shengguang [1 ]
Li, Yi [1 ,2 ]
Miao, Xiangshui [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Integrated Circuits, Wuhan 430074, Peoples R China
[2] Hubei Yangtze Memory Labs, Wuhan 430205, Peoples R China
基金
国家重点研发计划;
关键词
forward stagewise regression; in-memory computing; memristor; sparse coding; IN-MEMORY CHIP;
D O I
10.1088/1674-4926/44/10/104101
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Sparse coding is a prevalent method for image inpainting and feature extraction, which can repair corrupted images or improve data processing efficiency, and has numerous applications in computer vision and signal processing. Recently, several memristor-based in-memory computing systems have been proposed to enhance the efficiency of sparse coding remarkably. However, the variations and low precision of the devices will deteriorate the dictionary, causing inevitable degradation in the accuracy and reliability of the application. In this work, a digital-analog hybrid memristive sparse coding system is proposed utilizing a multilevel Pt/Al2O3/AlOx/W memristor, which employs the forward stagewise regression algorithm: The approximate cosine distance calculation is conducted in the analog part to speed up the computation, followed by high-precision coefficient updates performed in the digital portion. We determine that four states of the aforementioned memristor are sufficient for the processing of natural images. Furthermore, through dynamic adjustment of the mapping ratio, the precision requirement for the digit-to-analog converters can be reduced to 4 bits. Compared to the previous system, our system achieves higher image reconstruction quality of the 38 dB peak-signal-to-noise ratio. Moreover, in the context of image inpainting, images containing 50% missing pixels can be restored with a reconstruction error of 0.0424 root-mean-squared error.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Forward stagewise regression with multilevel memristor for sparse coding
    Chenxu Wu
    Yibai Xue
    Han Bao
    Ling Yang
    Jiancong Li
    Jing Tian
    Shengguang Ren
    Yi Li
    Xiangshui Miao
    Journal of Semiconductors, 2023, 44 (10) : 108 - 116
  • [2] Forward stagewise regression with multilevel memristor for sparse coding
    Chenxu Wu
    Yibai Xue
    Han Bao
    Ling Yang
    Jiancong Li
    Jing Tian
    Shengguang Ren
    Yi Li
    Xiangshui Miao
    Journal of Semiconductors, 2023, (10) : 108 - 116
  • [3] Fast Stagewise Sparse Factor Regression
    Chen, Kun
    Dong, Ruipeng
    Xu, Wanwan
    Zheng, Zemin
    Journal of Machine Learning Research, 2022, 23
  • [4] Fast Stagewise Sparse Factor Regression
    Chen, Kun
    Dong, Ruipeng
    Xu, Wanwan
    Zheng, Zemin
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [5] Forward Stagewise Regression on Incomplete Datasets
    Veras, Marcelo B. A.
    Mesquita, Diego P. P.
    Gomes, Joao P. P.
    Souza Junior, Amauri H.
    Barreto, Guilherme A.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2017, PT I, 2017, 10305 : 386 - 395
  • [6] Forward stagewise regression and the monotone lasso
    Hastie, Trevor
    Taylor, Jonathan
    Tibshirani, Robert
    Walther, Guenther
    ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 : 1 - 29
  • [7] Sparse coding with memristor networks
    Sheridan P.M.
    Cai F.
    Du C.
    Ma W.
    Zhang Z.
    Lu W.D.
    Nature Nanotechnology, 2017, Nature Publishing Group (12) : 784 - 789
  • [8] Sparse coding with memristor networks
    Sheridan, Patrick M.
    Cai, Fuxi
    Du, Chao
    Ma, Wen
    Zhang, Zhengya
    Lu, Wei D.
    NATURE NANOTECHNOLOGY, 2017, 12 (08) : 784 - +
  • [9] Forward Stagewise Shrinkage and Addition for High Dimensional Censored Regression
    Guo Z.
    Lu W.
    Li L.
    Statistics in Biosciences, 2015, 7 (2) : 225 - 244
  • [10] A NOTE ON STAGEWISE REGRESSION
    ALLEY, WM
    AMERICAN STATISTICIAN, 1987, 41 (02): : 132 - 134