Preparation of Structure Vacancy Defect Modified Diatomic-Layered g-C3N4 Nanosheet with Enhanced Photocatalytic Performance

被引:50
|
作者
Liu, Tian [1 ]
Zhu, Wei [1 ]
Wang, Ning [1 ]
Zhang, Keyu [1 ]
Wen, Xue [2 ]
Xing, Yan [3 ]
Li, Yunfeng [1 ]
机构
[1] Xian Polytech Univ, Coll Environm & Chem Engn, Xian Key Lab Text Chem Engn Auxiliaries, Xian 710048, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Chem, Xian 710049, Peoples R China
[3] Northeast Normal Univ, Dept Chem, Jilin Prov Key Lab Adv Energy Mat, Changchun 130024, Peoples R China
基金
中国国家自然科学基金;
关键词
exciton density; g-C3N4; photocatalysis; ultrathin structure; vacancy defect; CARBON NITRIDE; BAND-STRUCTURE; WATER; OXIDATION;
D O I
10.1002/advs.202302503
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Structure self-modification of graphitic carbon nitride (g-C3N4) without the assistance of other species has attracted considerable attention. In this study, the structure vacancy defect modified diatomic-layered g-C3N4 nanosheet (VCN) is synthesized by thermal treatment of bulk g-C3N4 in a quartz tube with vacuum atmosphere that will generate a pressure-thermal dual driving force to boost the exfoliation and formation of structure vacancy for g-C3N4. The as-prepared VCN possesses a large specific surface area with a rich pore structure to provide more active centers for catalytic reactions. Furthermore, the as-formed special defect level in VCN sample can generate a higher exciton density at photoexcitation stage. Meanwhile, the photogenerated charges will rapidly transfer to VCN surface due to the greatly shortened transfer path resulting from the ultrathin structure (& AP;1.5 nm), which corresponds to two graphite carbon nitride atomic layers. In addition, the defect level alleviates the drawback of enlarged bandgap caused by the quantum size effect of nano-scaled g-C3N4, resulting in a well visible-light utilization. As a result, the VCN sample exhibits an excellent photocatalytic performance both in hydrogen production and photodegradation of typical antibiotics.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Vacancy-modified g-C3N4 and its photocatalytic applications
    Xu, Xuejun
    Xu, Yisheng
    Liang, Yaoheng
    Long, Hangyu
    Chen, Dongchu
    Hu, Huawen
    Ou, Jian Zhen
    MATERIALS CHEMISTRY FRONTIERS, 2022, 6 (21) : 3143 - 3173
  • [2] Preparation and Photocatalytic Performance of g-C3N4 Nanotubes
    Wang Xiao-Xue
    Gao Jian-Ping
    Zhao Rui-Ru
    Wu Yong-Li
    Hao Chao-Yue
    Qiu Hai-Xia
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2018, 34 (06) : 1059 - 1064
  • [3] Ag/g-C3N4 layered composites with enhanced visible light photocatalytic performance
    Chen, Lu
    Man, Yuhong
    Chen, Zhiqian
    Zhang, Yongping
    MATERIALS RESEARCH EXPRESS, 2016, 3 (11)
  • [4] Morphology regulation and photocatalytic performance of modified g-C3N4
    Wu, Canfeng
    Chen, Yanrong
    Yao, Yingbang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (02)
  • [5] Morphology regulation and photocatalytic performance of modified g-C3N4
    Canfeng Wu
    Yanrong Chen
    Yingbang Yao
    Journal of Materials Science: Materials in Electronics, 2024, 35
  • [6] Preparation and Photocatalytic Performance of g-C3N4/Kaolinite Composite
    Yao Guang-Yuan
    Huang Wei-Xin
    Li Chun-Quan
    Sun Zhi-Ming
    Zheng Shui-Lin
    JOURNAL OF INORGANIC MATERIALS, 2016, 31 (09) : 929 - 934
  • [7] Fabrication of novel carbon species into porous g-C3N4 nanosheet frameworks with enhanced photocatalytic performance
    Xing, Weinan
    Zhang, Yichi
    Cheng, Ke
    Zou, Jinghui
    Wu, Guangyu
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (24) : 10589 - 10593
  • [8] Preparation of g-C3N4/ZnO composites and their enhanced photocatalytic activity
    Xing, H.
    Ma, H.
    Fu, Y.
    Xue, M.
    Zhang, X.
    Dong, X.
    Zhang, X.
    MATERIALS TECHNOLOGY, 2015, 30 (02) : 122 - 127
  • [9] Preparation of MgO/g-C3N4 composite and it enhanced photocatalytic activity
    Zhang, Xianzhi
    Chun, Yuan
    PROCEEDINGS OF THE 2015 2ND INTERNATIONAL WORKSHOP ON MATERIALS ENGINEERING AND COMPUTER SCIENCES (IWMECS 2015), 2015, 33 : 509 - 512
  • [10] Graphene quantum dot modified g-C3N4 for enhanced photocatalytic oxidation of ammonia performance
    Wang, Ruiling
    Xie, Tian
    Sun, Zhiyong
    Pu, Taofei
    Li, Weibing
    Ao, Jin-Ping
    RSC ADVANCES, 2017, 7 (81): : 51687 - 51694