Uniform Error Estimates of the Finite Element Method for the Navier-Stokes Equations in R2 with L2 Initial Data

被引:0
|
作者
Ren, Shuyan [1 ]
Wang, Kun [2 ]
Feng, Xinlong [1 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; finite element method; uniform error estimate; L-2 initial data; GALERKIN METHOD; SMOOTHING PROPERTY; STABILITY; APPROXIMATION; SCHEME;
D O I
10.3390/e25050726
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the finite element method of the Navier-Stokes equations with the initial data belonging to the L-2 space for all time t > 0. Due to the poor smoothness of the initial data, the solution of the problem is singular, although in the H-1-norm, when t is an element of [0, 1). Under the uniqueness condition, by applying the integral technique and the estimates in the negative norm, we deduce the uniform-in-time optimal error bounds for the velocity in H-1-norm and the pressure in L-2-norm.
引用
收藏
页数:20
相关论文
共 50 条