A machine learning approach to predict quality of life changes in patients with Parkinson's Disease
被引:2
|
作者:
Alexander, Tyler D.
论文数: 0引用数: 0
h-index: 0
机构:
Thomas Jefferson Univ Hosp, Dept Neurol Surg, Philadelphia, PA 19107 USA
Thomas Jefferson Univ Hosp, Dept Neurol Surg, 909 Walnut St,3rd Floor, Philadelphia, PA 19107 USAThomas Jefferson Univ Hosp, Dept Neurol Surg, Philadelphia, PA 19107 USA
Alexander, Tyler D.
[1
,3
]
Nataraj, Chandrasekhar
论文数: 0引用数: 0
h-index: 0
机构:
Villanova Univ, Villanova Ctr Analyt Dynam Syst VCADS, Villanova, PA 19085 USAThomas Jefferson Univ Hosp, Dept Neurol Surg, Philadelphia, PA 19107 USA
Nataraj, Chandrasekhar
[2
]
Wu, Chengyuan
论文数: 0引用数: 0
h-index: 0
机构:
Thomas Jefferson Univ Hosp, Dept Neurol Surg, Philadelphia, PA 19107 USAThomas Jefferson Univ Hosp, Dept Neurol Surg, Philadelphia, PA 19107 USA
Wu, Chengyuan
[1
]
机构:
[1] Thomas Jefferson Univ Hosp, Dept Neurol Surg, Philadelphia, PA 19107 USA
[2] Villanova Univ, Villanova Ctr Analyt Dynam Syst VCADS, Villanova, PA 19085 USA
[3] Thomas Jefferson Univ Hosp, Dept Neurol Surg, 909 Walnut St,3rd Floor, Philadelphia, PA 19107 USA
ObjectiveParkinson disease (PD) is a progressive neurodegenerative disorder with an annual incidence of approximately 0.1%. While primarily considered a motor disorder, increasing emphasis is being placed on its non-motor features. Both manifestations of the disease affect quality of life (QoL), which is captured in part II of the Unified Parkinson's Disease Rating Scale (UPDRS-II). While useful in the management of patients, it remains challenging to predict how QoL will change over time in PD. The goal of this work is to explore the feasibility of a machine learning algorithm to predict QoL changes in PD patients. MethodsIn this retrospective cohort study, patients with at least 12 months of follow-up were identified from the Parkinson's Progression Markers Initiative database (N = 630) and divided into two groups: those with and without clinically significant worsening in UPDRS-II (n = 404 and n = 226, respectively). We developed an artificial neural network using only UPDRS-II scores, to predict whether a patient would clinically worsen or not at 12 months from follow-up. ResultsUsing UPDRS-II at baseline, at 2 months, and at 4 months, the algorithm achieved 90% specificity and 56% sensitivity. InterpretationA learning model has the potential to rule in patients who may exhibit clinically significant worsening in QoL at 12 months. These patients may require further testing and increased focus.
机构:
Univ Porto, Fac Med, PhD Program Hlth Data Sci, P-4200319 Porto, Portugal
BIAL Portela & Ca SA, Med Dept, P-4745457 Sao Mamede do Coronado, PortugalUniv Porto, Fac Med, PhD Program Hlth Data Sci, P-4200319 Porto, Portugal
Magano, Daniel
Taveira-Gomes, Tiago
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Dept Community Med Informat & Decis Hlth, Fac Med, PL-4200319 Porto, Portugal
Univ Fernando Pessoa, Fac Hlth Sci, P-4200150 Porto, Portugal
SIGIL Sci Enterprises, Dubai, U Arab EmiratesUniv Porto, Fac Med, PhD Program Hlth Data Sci, P-4200319 Porto, Portugal
Taveira-Gomes, Tiago
Massano, Joao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Dept Clin Neurosci & Mental Hlth, Fac Med, P-4200319 Porto, Portugal
Ctr Hosp Univ Sao Joao, Dept Neurol, P-4200319 Porto, PortugalUniv Porto, Fac Med, PhD Program Hlth Data Sci, P-4200319 Porto, Portugal
Massano, Joao
Barros, Antonio S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Porto, Fac Med, Cardiovasc R&D Ctr UnIC RISE, Dept Surg & Physiol, P-4200319 Porto, PortugalUniv Porto, Fac Med, PhD Program Hlth Data Sci, P-4200319 Porto, Portugal
机构:
All India Inst Med Sci, Dept Neurol, Neurosci Ctr 702, New Delhi 110029, IndiaAll India Inst Med Sci, Dept Neurol, Neurosci Ctr 702, New Delhi 110029, India
Behari, A
Srivastava, AK
论文数: 0引用数: 0
h-index: 0
机构:All India Inst Med Sci, Dept Neurol, Neurosci Ctr 702, New Delhi 110029, India
Srivastava, AK
Pandey, RM
论文数: 0引用数: 0
h-index: 0
机构:All India Inst Med Sci, Dept Neurol, Neurosci Ctr 702, New Delhi 110029, India