Approximation of classes of periodic functions of several variables with given majorant of mixed moduli of continuity

被引:0
|
作者
Fedunyk-Yaremchuk, O., V [1 ]
Hembars'ka, S. B. [1 ]
Solich, K., V [1 ]
机构
[1] Lesya Ukrainka Volyn Natl Univ, Bankova Str 9, UA-43025 Lutsk, Ukraine
关键词
mixed modulus of continuity; Bari-Stechkin condition; Nikol'skii-Besov-type class; linear operator; Vallee Poussin kernel; Fejer kernel; DIAMETERS; WIDTHS;
D O I
10.15330/cmp.15.2.468-481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain the exact-order estimates of approximation of the Nikol'skii-Besov-type classes B-infinity,theta(Omega) of periodic functions of several variables with a given function Omega(t) of a special form by using linear operators satisfying certain conditions. The approximation error is estimated in the metric of the space L-infinity. The obtained estimates of the considered approximation characteristic, in addi-tion to independent interest, can be used to establish the lower bounds of the orthowidths of the corresponding functional classes.
引用
收藏
页码:468 / 481
页数:14
相关论文
共 50 条