Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids

被引:0
|
作者
Caraballo, Tomas [1 ,2 ]
Carvalho, Alexandre N. [3 ]
Lopez-Lazaro, Heraclio [3 ]
机构
[1] Univ Sevilla US, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, C-Tarfia S-N, Seville 41012, Spain
[2] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
[3] Univ Sao Paulo, Inst Ciencias Matemat & Comp ICMC, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
ATTRACTOR; DIMENSION; UNIQUENESS; FLOW;
D O I
10.1063/5.0150897
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the global modification of the Ladyzhenskaya equations, for incompressible non-Newtonian fluids. This modification is through a cut-off function that multiplies the convective term of the equation and an additional artificial smoothing dissipation term as part of the viscous term of the equation. The goal of this work is the comparative analysis between the modified system and the non-modified system. Therefore, we show the existence and regularity of weak solutions, the existence of global attractors, the estimation of the fractal dimension of the global attractors, and finally, the relationship of the autonomous dynamics between the modified system and the non-modified system.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] ON THE NON-NEWTONIAN INCOMPRESSIBLE FLUIDS
    MALEK, J
    NECAS, J
    RUZICKA, M
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1993, 3 (01): : 35 - 63
  • [2] Non-Newtonian incompressible fluids with nonlinear shear tensor and conditions
    Lopez-Lazaro, hereditary Heraclio Ledgar
    Marin-Rubio, Pedro
    Planas, Gabriela
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 138
  • [3] SOLUTIONS FOR INCOMPRESSIBLE NON-NEWTONIAN FLUIDS
    BELLOUT, H
    BLOOM, F
    NECAS, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (08): : 795 - 800
  • [4] On non-Newtonian incompressible fluids with phase transitions
    Kim, Namkwon
    Consiglieri, Luisa
    Rodrigues, Jos Francisco
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (13) : 1523 - 1541
  • [5] Numerical modelling of incompressible flows for Newtonian and non-Newtonian fluids
    Keslerova, Radka
    Kozel, Karel
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 80 (08) : 1783 - 1794
  • [6] ON THE NORMAL STRESS EFFECTS OF INCOMPRESSIBLE NON-NEWTONIAN FLUIDS
    HARIHARAN, S
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1981, 312 (02): : 109 - 118
  • [7] Numerical Simulations of Incompressible Laminar Flow for Newtonian and Non-Newtonian Fluids
    Keslerova, R.
    Kozel, K.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 465 - 472
  • [8] NONLINEAR STOCHASTIC EQUATION FOR NON-NEWTONIAN FLUIDS
    HOUGHTON, G
    JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (07): : 2208 - &
  • [9] Density-Dependent Incompressible Fluids with Non-Newtonian Viscosity
    F. Guillén-González
    Czechoslovak Mathematical Journal, 2004, 54 : 637 - 656
  • [10] MODIFIED DARCY LAW FOR NON-NEWTONIAN FLUIDS
    WADA, S
    NISHIYAMA, N
    NISHIDA, S
    BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1985, 28 (246): : 3031 - 3037