Optimizing Cu+-Cu0 synergy by operando tracking of Cu2O nanocatalysts during the electrochemical CO2 reduction reaction

被引:9
|
作者
Zhang, Hao [1 ]
Wang, Ying [2 ,4 ]
Lei, Qiong [3 ]
Tang, Chiu [5 ]
Yin, Jun [3 ]
Lo, Tsz Woon Benedict [1 ,3 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Biol & Chem Technol, Hunghom, Hong Kong, Peoples R China
[2] Jilin Univ, State Key Lab Automot Simulat & Control, Sch Mat Sci & Engn, Key Lab Automobile Mat MOE, Changchun 130012, Peoples R China
[3] Hong Kong Polytech Univ, Dept Appl Phys, Hunghom, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
[5] Diamond Light Source Ltd, Harwell Sci & Innovat Campus,Harwell Campus, Oxford OX11 0DE, Oxon, England
基金
中国国家自然科学基金;
关键词
ECO2RR; Oxide-derived copper; Multi -modal characterization; Operando characterization; Morphology investigation; SUBSURFACE OXYGEN; ELECTROREDUCTION; ELECTRODES; MECHANISM; SURFACE;
D O I
10.1016/j.nanoen.2023.108920
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tracking the evolution of electrocatalysts over oxide-derived Cu materials during the electrochemical CO2 reduction reaction (eCO2RR) is pivotal for optimizing the product selectivity toward desired multi-carbon (C2+) products. However, the identification of the true intermediate active catalyst is still unclear. Here, we adopted a multi-modal characterization approach, primarily based on operando powder X-ray diffraction and operando micro-Raman spectroscopy, to study three Cu2O precursors with different morphologies, namely, octahedral (O-), cubic (C-), and nanowire (N-Cu2O). This multi-modal approach allows us to investigate the Cu2O nano-crystallites from the interface to the bulk structure. The results suggested notably different electrochemical reduction kinetics. 26.1% O-Cu2O and 90.6% C-Cu2O were reduced to much smaller Cu(0) domains after two hours of time-on-stream; N-Cu2O, with notably higher surface-to-volume ratio, was completely reduced within 45 min of time-on-stream. We accordingly observed a structure-reactivity correlation where a more intricate Cu2O/Cu grain network (and hence Cu+-Cu0 junctions) as observed in O-Cu2O, can lead to stable and quantitative production of ethylene at the Faradic efficiency of around 40% (in stark contrast to those of C-and N-Cu2O). The synergy between the Cu2O and Cu phases was also verified by density functional theory calculations. The upshifted D-band center of Cu2O/Cu in O-Cu2O is the most conducive toward the production of ethylene, whereas the downshifted D-band center of Cu2O/Cu in C-Cu2O leads to a decreased production of ethylene in the expense of unwanted production of hydrogen. We envisage that system optimization and design of new catalysts will become more facile and efficient using a related multi-modal operando characterization philosophy.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Restructuring of Cu2O to Cu2O@Cu-Metal-Organic Frameworks for Selective Electrochemical Reduction of CO2
    Tan, Xinyi
    Yu, Chang
    Zhao, Changtai
    Huang, Huawei
    Yao, Xiuchao
    Han, Xiaotong
    Guo, Wei
    Cui, Song
    Huang, Hongling
    Qiu, Jieshan
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (10) : 9904 - 9910
  • [2] N-doped Cu2O with the tunable Cu0 and Cu+ sites for selective CO2 electrochemical reduction to ethylene
    Shen, Yao
    Qian, Liuqing
    Xu, Qianqian
    Wang, Shilun
    Chen, Yong
    Lu, Hengxia
    Zhou, Yu
    Ye, Jiexu
    Zhao, Jingkai
    Gao, Xiang
    Zhang, Shihan
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2025, 150 : 246 - 253
  • [3] Cu-based nanocatalysts for electrochemical reduction of CO2
    Xie, Huan
    Wang, Tanyuan
    Liang, Jiashun
    Li, Qing
    Sun, Shouheng
    NANO TODAY, 2018, 21 : 41 - 54
  • [4] Electrochemical Reduction of CO2 using Supported Cu2O Nanoparticles
    Bugayong, J.
    Griffin, G. L.
    ELECTROCHEMICAL SYNTHESIS OF FUELS 2, 2013, 58 (02): : 81 - 89
  • [5] Electrochemical reduction of CO2 on pure and doped Cu2O(111)
    Liu, Hongling
    Liu, Di
    Yu, Zhichao
    Bai, Haoyun
    Pan, Hui
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 683 : 170 - 177
  • [6] Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O
    Ohya, Shinya
    Kaneco, Satoshi
    Katsumata, Hideyuki
    Suzuki, Tohru
    Ohta, Kiyohisa
    CATALYSIS TODAY, 2009, 148 (3-4) : 329 - 334
  • [7] Operando Constructing Cu/Cu2O Electrocatalysts for Efficient CO2 Electroreduction to Ethanol: CO2-Assisted Structural Evolution of Octahedral Cu2O by Operando CV Activation
    Yang, Yong
    He, Anbang
    Li, Hui
    Zou, Qian
    Liu, Zuohua
    Tao, Changyuan
    Du, Jun
    ACS CATALYSIS, 2022, 12 (20) : 12942 - 12953
  • [8] Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O
    Malik, M. Irfan
    Malaibari, Zuhair Omar
    Atieh, Muataz
    Abussaud, Basim
    CHEMICAL ENGINEERING SCIENCE, 2016, 152 : 468 - 477
  • [9] Tuning the selectivity of Cu2O/ZnO catalyst for CO2 electrochemical reduction
    Azenha, Catia
    Mateos-Pedrero, Cecilia
    Lagarteira, Tiago
    Mendes, Adelio M.
    JOURNAL OF CO2 UTILIZATION, 2023, 68
  • [10] Structural Transformation and Degradation of Cu Oxide Nanocatalysts during Electrochemical CO2 Reduction
    Lee, Soo Hong
    Acosta, Jaime E. Aviles
    Lee, Daewon
    Larson, David M.
    Li, Hui
    Chen, Junjie
    Lee, Jinyoung
    Erdem, Ezgi
    Lee, Dong Un
    Blair, Sarah J.
    Gallo, Alessandro
    Zheng, Haimei
    Nielander, Adam C.
    Tassone, Christopher J.
    Jaramillo, Thomas F.
    Drisdell, Walter S.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (08) : 6536 - 6548