Non-spectrality of a class of Moran measures on R3

被引:0
|
作者
Wang, Qi [1 ]
Wang, Xueli [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Math & Data Sci, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-spectrality; Moran measure; Orthogonal exponentials; Digit set; EXPONENTIALS;
D O I
10.1007/s11785-023-01359-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the non-spectrality of Moran measures mu m,{D-n,} corresponding to an expanding real matrix M = diag[r s, t] and the digit sets D = {(0, 0, 0)(T), (a(n), 0,0)(T) (0, b(n), 0)(T), (0, 0, c(n))(T)}, where |r|, |s|, |t| > 1 and a(n),b(n),c(n) is an element of 2Z + 1. We first correct an erroneous result of Chen et al. [2] and Yang et al. [26]. In the cases r, s, t is an element of{p/q : p,q is an element of 2Z -1) := E and r is an element of [p/q] : p is an element of 2Z, q is an element of 2Z-1) r, t is an element of E, we determine the maximal cardinality of orthogonal exponentials in the 'filbert space L-2( mu(M), {D-n,}). The results here generalize the known results.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Spectrality and non-spectrality of some Moran measures in R3
    Yang, Xin
    Ai, Wen-Hui
    ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (04)
  • [2] Spectrality and non-spectrality of a class of Moran measures
    Wang, Wei-Jie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 543 (02)
  • [3] Non-spectrality of Moran measures with four digits
    J. Su
    M.-L. Chen
    Analysis Mathematica, 2022, 48 : 173 - 183
  • [4] NON-SPECTRALITY OF MORAN MEASURES WITH FOUR DIGITS
    Su, J.
    Chen, M-L
    ANALYSIS MATHEMATICA, 2022, 48 (01) : 173 - 183
  • [5] Spectrality of a Class of Moran Measures
    Chen, Ming-Liang
    Liu, Jing-Cheng
    Su, Juan
    Wang, Xiang-Yang
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2020, 63 (02): : 366 - 381
  • [6] Spectrality of a class of Moran measures
    Zheng-Yi Lu
    Xin-Han Dong
    Monatshefte für Mathematik, 2021, 196 : 207 - 230
  • [7] Spectrality of a class of Moran measures
    Lu, Zheng-Yi
    Dong, Xin-Han
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (01): : 207 - 230
  • [8] SPECTRALITY OF A CLASS OF MORAN MEASURES ON THE PLANE
    Liu, Z. -S
    ACTA MATHEMATICA HUNGARICA, 2023, 171 (1) : 107 - 123
  • [9] Spectrality of a class of Moran measures on the plane
    Z.-S. Liu
    Acta Mathematica Hungarica, 2023, 171 : 107 - 123
  • [10] Spectrality of a Class of Moran Measures on Rn
    Chen, Ming-Liang
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2024, 18 (07)