Non-stationary spatial autoregressive modeling for the prediction of lattice data

被引:4
|
作者
Mojiri, A. [1 ]
Waghei, Y. [2 ]
Nili-Sani, H. R. [2 ]
Borzadaran, G. R. Mohtashami [3 ]
机构
[1] Univ Zabol, Dept Stat, Zabol, Iran
[2] Univ Birjand, Dept Stat, Birjand, Iran
[3] Ferdowsi Univ Mashhad, Reliabil & Dependency Ctr Excellence, Dept Stat & Ordered Data, Mashhad, Razavi Khorasan, Iran
关键词
Differencing; Lattice data; Non-stationary; Prediction; Spatial autoregressive model; REGRESSION; INFERENCE;
D O I
10.1080/03610918.2021.1996604
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatial autoregressive models are usually used for stationary lattice random fields with a zero or fixed mean. However, many lattice random fields are non-stationary, because they have a non-fixed mean, a non-fixed covariance function, or both. In non-stationary time series, subtracting a fitted trend and differencing are two methods to reach a stationary model. In this paper, these methods have been generalized for non-stationary spatial lattice data. Then, we provide a spatial prediction for each method. By using a simulation study and real data set, we compare the prediction accuracy of the two methods. The results show that predictions made by the trend estimation method are better than differencing method.
引用
收藏
页码:5714 / 5726
页数:13
相关论文
共 50 条
  • [1] Non-stationary spatial modeling
    Higdon, D
    Swall, J
    Kern, J
    [J]. BAYESIAN STATISTICS 6, 1999, : 761 - 768
  • [2] Subsampling variance estimation for non-stationary spatial lattice data
    Ekstroem, Magnus
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2008, 35 (01) : 38 - 63
  • [3] Autoregressive Modeling Approach for Non-Stationary Vehicular Channel Simulation
    Yusuf, Marwan
    Tanghe, Emmeric
    Challita, Frederic
    Laly, Pierre
    Martens, Luc
    Gaillot, Davy P.
    Lienard, Martine
    Joseph, Wout
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 1124 - 1131
  • [4] Does non-stationary spatial data always require non-stationary random fields?
    Fuglstad, Geir-Arne
    Simpson, Daniel
    Lindgren, Finn
    Rue, Harard
    [J]. SPATIAL STATISTICS, 2015, 14 : 505 - 531
  • [5] On non-stationary threshold autoregressive models
    Liu, Weidong
    Ling, Shiqing
    Shao, Qi-Man
    [J]. BERNOULLI, 2011, 17 (03) : 969 - 986
  • [6] Multiscale Autoregressive (MAR) Models with MODWT Decomposition on Non-Stationary Data
    Juliza, Melda
    Sa'adah, Umu
    Fernandes, Adji A. R.
    [J]. 9TH ANNUAL BASIC SCIENCE INTERNATIONAL CONFERENCE 2019 (BASIC 2019), 2019, 546
  • [7] Non-stationary autoregressive processes with infinite variance
    Chan, Ngai Hang
    Zhang, Rongmao
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (06) : 916 - 934
  • [8] Modeling of non-stationary autoregressive alpha-stable processes by particle filters
    Gencaga, Deniz
    Ertuzun, Aysin
    Kuruoglu, Ercan E.
    [J]. DIGITAL SIGNAL PROCESSING, 2008, 18 (03) : 465 - 478
  • [9] ON PREDICTION OF NON-STATIONARY PROCESSES
    ABDRABBO, NA
    PRIESTLE.MB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1967, 29 (03) : 570 - &
  • [10] NON-STATIONARY MARKOV WALKS ON LATTICE
    KEILSON, J
    [J]. JOURNAL OF MATHEMATICS AND PHYSICS, 1962, 41 (03): : 205 - &